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Consider a finite system of N Brownian particles on the real line. Rank them from bottom

to top: the (currently) lowest particle has rank 1, the second lowest has rank 2, etc., up

to the top particle, which has rank N . The particle which has (currently) rank k moves

as a Brownian motion with drift coefficient gk and diffusion coefficient σ2
k. When two or

more particles collide, they might exchange ranks; in this case, they exchange drift and

diffusion coefficients. This model is called a system of competing Brownian particles. It was

introduced in Banner, Fernholz, Karatzas (2005) for the purpose of financial modeling.

Since then, it attracted a considerable amount of attention.

We can also consider infinite systems of competing Brownian particles (with the lowest

particle but no highest particle, that is, with ranks ranging from 1 to∞). For both finite and

infinite systems, the gap process is formed by the spacings (gaps) between adjacent particles.

It is N − 1-dimensional for a finite system with N particles and infinite-dimensional for an

infinite system. We say that a triple collision has occurred if three or more particles occupy

the same position at the same time.

In this thesis, we prove several new results about these systems. In particular, we establish

convergence results for the gap process of infinite systems, building on the work of Pal,

Pitman (2008); and we find a necessary and sufficient condition for a.s. absence of triple

collisions, continuing the research from Ichiba, Karatzas, Shkolnikov (2013).
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NOTATION

We denote by Ik the k × k-identity matrix. We let R+ := [0,∞). For a vector x =

(x1, . . . , xd)
′ ∈ Rd, let ‖x‖ := (x2

1 + . . .+ x2
d)

1/2
be its Euclidean norm. For any two vectors

x, y ∈ Rd, their dot product is denoted by x ·y = x1y1 + . . .+xdyd. We compare vectors x and

y componentwise: x ≤ y if xi ≤ yi for all i = 1, . . . , d; x < y if xi < yi for all i = 1, . . . , d;

similarly for x ≥ y and x > y. This comparison notation is also valid when d = ∞, that

is, when we compare infinite-dimensional vectors. We compare matrices of the same size

componentwise, too. For example, we write x ≥ 0 for x ∈ Rd if xi ≥ 0 for i = 1, . . . , d;

C = (cij)1≤i,j≤d ≥ 0 if cij ≥ 0 for all i, j. The symbol a′ denotes the transpose of (a vector

or a matrix) a.

Fix d ≥ 1, and let I ⊆ {1, . . . , d} be a nonempty subset. Write its elements in increasing

order: I = {i1, . . . , im}, 1 ≤ i1 < i2 < . . . < im ≤ d. For any x ∈ Rd, let [x]I :=

(xi1 , . . . , xim)′. For any d × d-matrix C = (cij)1≤i,j≤d, let [C]I := (cikil)1≤k,l≤m. Let J ⊆

{1, . . . , d} be another nonempty subset. Write its elements in the order of increase:

J = {j1, . . . , jl}, 1 ≤ j1 < j2 < . . . < jl ≤ d.

Then we denote

[C]IJ := (cikjs)1≤k≤m
1≤s≤l

.

In particular, for I = J we have: [C]IJ ≡ [C]I . If p = 1, . . . , d, then we let [x]p :=

(x1, . . . , xp)
′. We let

WN := {y = (y1, . . . , yN)′ ∈ RN | y1 ≤ . . . ≤ yN}.

We write C([0, T ],Rd) for the set of continuous functions f : [0, T ] → Rd. For the case

d = 1, we write C[0, T ] ≡ C([0, T ],Rd). For A ⊆ Rd, we write C2
b (A) for the set of twice
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continuously differentiable functions f : A→ R which are bounded together with their first

and second derivatives.

For x ∈ Rd (this includes the case d = ∞), we let [x,∞) := {y ∈ Rd | y ≥ x}. We

say two probability measures ν1 and ν2 on Rd satisfy ν1 � ν2, or ν2 � ν1, if for every

y ∈ Rd we have: ν1[y,∞) ≤ ν2[y,∞). We say that ν1 is stochastically dominated by ν2, or

ν2 stochastically dominates ν1, or ν1 is stochastically smaller than ν2, or ν2 is stochastically

larger than ν1. The same terminology applies to Rd-valued random variables X, Y : we say

that X is stochastically dominated by Y if the distribution of X is stochastically dominated

by the distribution of Y .

Consider two Rd-valued processes Z = (Z(t), t ≥ 0) and Z = (Z(t), t ≥ 0). (This includes

the case d =∞.) We say that Z is stochastically dominated by Z, and write it as Z � Z, if

for every t ≥ 0 and y ∈ Rd we have:

P(Z(t) ≥ y) ≤ P(Z(t) ≥ y).

In otehr words, Z � Z if for every t ≥ 0 we have: Z(t) � Z(t). If the processes Z and Z are

Markov, then by changing the probability space we can move from stochastic domination to

pathwise domination, see [70, Theorem 5].

The arrow ⇒ indicates weak convergence of probability measures or random variables.

The symbol E(α) stands for the exponential distribution with mean α−1, rate α and density

αe−αxdx, x > 0. A standard Brownian motion is a one-dimensional Brownian motion start-

ing from zero with drift coefficient 0 and diffusion coefficient 1. The symbol δx indicates the

Dirac delta measure at the point x.

We call the sequence (a1, . . . , an) of real numbers concave if

ak ≥
1

2
(ak+1 + ak−1) , k = 2, . . . , n− 1.

Same definition applies to a sequence (a1, a2, . . .).

For a positive multidimensional orthant S = Rd
+, we let Si = {x ∈ S | xi = 0} be the ith

face of the boundary ∂S. For a nonempty subset I ⊆ {1, . . . , d}, we let

SI := {x ∈ S | xi = 0 for i ∈ I}.
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This is called an edge of the boundary ∂S of the orthant S.

We use the following metric on R∞:

ρ ((xn)n≥1, (yn)n≥1) :=
∞∑
n=1

2−n (1 ∧ |xn − yn|) . (1)

This metric corresponds to the componentwise convergence.

We denote by

Ψ(u) :=
1√
2π

∫ ∞
u

e−x
2/2dx

the tail probability of the standard normal distribution.
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Chapter 1

INTRODUCTION

1.1 The Concept of Competing Brownian Particles

Consider a system X(t) = (X1(t), . . . , XN(t))′ of N Brownian particles on the real line. Rank

them from bottom to top:

X(1)(t) ≤ X(2)(t) ≤ . . . ≤ X(N)(t).

The (currently) lowest particle has rank 1, the next lowest particle has rank 2, etc., up to

the top particle, which has rank N . Assume they move according to the following rule: the

particle which currently has rank k moves as a Brownian motion with drift coefficient gk and

diffusion coefficient σ2
k, for each k = 1, . . . , N . Particles can collide and exchange ranks; in

this case, they exchange their drift and diffusion coefficients.

(There is a technical difficulty: if a few particles occupy the same position, then how do

we assign ranks? We resolve ties in favor of the lexicographic order; more on that later.)

In other words, the SDE governing this system is

dXi(t) =
N∑
k=1

1 (Xihas rank k at time t) (gkdt+ σkdWi(t)) , (1.1)

where W1, . . . ,WN are i.i.d. standard Brownian motions. In is proved in [6] that this SDE

has a weak solution which is unique in law.

This system was introduced in [3]. The original motivation to study systems of competing

Brownian particles came from Stochastic Finance. An observed phenomenon of real-world

stock markets is that stocks with smaller capitalizations have larger growth rates and larger

volatilities. This can be captured by a system of competing Brownian particles: just let

g1 > . . . > gN and σ1 > . . . > σN , and suppose that for i = 1, . . . , N , the quantity eXi(t) is
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the capitalization of the ith stock at time t. For financial applications and market models

similar to this rank-based model, see the articles [2], [29], [72], the book [27, Chapter 5] and

a somewhat more recent survey [31, Chapter 3].

This model was recently studied in [59], [58], [30], [11], and other papers. A more extensive

literature review can be found in Chapter 3, Section 3.9.

A particular case is the Atlas model, when

g1 = 1, g2 = . . . = gN = 0, σ1 = . . . = σN = 1.

There, the (currently) bottom particle moves as a Brownian motion with drift 1, all other

particles move as standard Brownian motions.

The gap process is defined as an RN−1
+ -valued process Z(t) = (Z1(t), . . . , ZN−1(t))′, with

Zk(t) = X(k+1)(t)−Xk(t), k = 1, . . . , N − 1, t ≥ 0.

1.2 Collisions of Particles

A triple collision occurs when we have:

X(k−1)(t) = X(k)(t) = X(k+1)(t) for some k = 2, . . . , N − 1, t > 0.

A simultaneous collision occurs when we have:

X(k)(t) = X(k+1)(t) and X(l)(t) = X(l+1)(t) for some 1 ≤ k < l ≤ N − 1 and t > 0.

A triple collision is a particular case of a simultaneous collision (let k = l − 1).

One motivation to study triple collisions is that the equation (1.1) has a strong solution

(which is pathwise unique) only up to the first moment of a triple collision. After this

moment, it is not known whether it has a strong solution or not. (This is the result from

[59].)

In the paper [59], it was proved that if the sequence (0, σ2
1, σ

2
2, . . . , σ

2
N , 0) is concave, then

there are a.s. no triple collisions. Conversely, if there are a.s. no triple collisions, then the

sequence (σ2
1, . . . , σ

2
N) is concave. In Chapter 4, we prove the following result:
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Theorem 1.2.1. There are a.s. no triple and no simultaneous collisions if and only if the

sequence (σ2
1, . . . , σ

2
N) is concave. If it is not concave, that is, there exists k = 2, . . . , N − 1

such that

σ2
k <

1

2

(
σ2
k−1 + σ2

k+1

)
,

then with positive probability there is a triple collision between particles X(k−1), X(k), X(k+1).

An interesting corollary: if there are a.s. no triple collisions, then there are a.s. no

simultaneous collisions.

We also find sufficient conditions for absence of specific types of collisions: for example,

X(1)(t) = X(2)(t) = X(3)(t). Suppose, for the sake of example, that we have N = 4 competing

Brownian particles.

Proposition 1.2.2. If the following conditions

9σ2
1 ≤ 7σ2

2 + 7σ2
3 + 7σ2

4;

3σ2
1 ≤ 5σ2

2 + σ2
3 + σ2

4;

3σ2
1 + 3σ2

4 ≤ 5σ2
2 + 5σ2

3;

3σ2
4 ≤ σ2

1 + σ2
2 + 5σ2

3;

9σ2
4 ≤ 7σ2

1 + 7σ2
2 + 7σ2

3,

hold, then a.s. there does not exist t > 0 such that

X(1)(t) = X(2)(t) = X(3)(t) = X(4)(t). (1.2)

Moreover, we can make a stronger statement.

Proposition 1.2.3. If the five inequalities from Proposition 1.2.2 hold, then a.s. there does

not exist t > 0 such that

X(1)(t) = X(2)(t) and X(3)(t) = X(4)(t). (1.3)
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Proposition 1.2.4. If the five inequalities from Proposition 1.2.2 together with

σ2
2 ≥

1

2

(
σ2

1 + σ2
3

)
hold, then a.s. there does not exist t > 0 such that

X(1)(t) = X(2)(t) = X(3)(t). (1.4)

Similar statements (but with other inequalities involving σ2
k, k = 1, . . . , N) can be stated

for any N = 5, 6, . . . and for any type of collision between X(1), . . . , X(N) (for example,

X(2) = X(3) = X(4) and X(6) = X(7)).

It is also shown in Theorem 6.2.2 due to Cameron Bruggeman that in the N = 4 case

above, if σ2
1 + σ2

4 ≤ σ2
2 + σ2

3, then there a.s. there is no t > 0 such that (1.2) holds. However,

this result has no generalizations for larger N .

1.3 Sketch of Proof for Collisions: an SRBM in the Orthant

The idea of the proof is as follows. The gap process is the so-called semimartingale reflected

Brownian motion, shortly SRBM, in the orthant RN−1
+ . We devote Chapter 2 to this process;

now let us just explain it informally. See also the papers [125], [124] for the background. An

extensive literature review is postopned until Section 2.5.

Fix d ≥ 2, the dimension. Let S = Rd
+ be the d-dimensional positive orthant. Let

us loosely describe an S-valued stochastic process Z = (Z(t), t ≥ 0), which is called a

semimartingale reflected Brownian motion, shortly SRBM, in the orthant S. First, let us

describe its parameters: a drift vector µ ∈ Rd, a symmetric positive definite d×d covariance

matrix A, and another d × d reflection matrix R. The process Z = (Z(t), t ≥ 0), which is

also denoted by SRBMd(R, µ,A), has the following properties:

(i) it behaves as a d-dimensional Brownian motion with drift vector µ and covariance

matrix A in the interior of S;

(ii) for each i = 1, . . . , d, at the face Si = {z ∈ S | zi = 0} of the boundary ∂S, it is

reflected according to the direction ri, the ith column of R.
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The gap process is an SRBMN−1(R, µ,A) with the following parameters R, µ,A:

R =



1 −1/2 0 . . . 0

−1/2 1 −1/2 . . . 0

0 −1/2 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1



A =



σ2
1 + σ2

2 −σ2
2 0 . . . 0

−σ2
2 σ2

2 + σ2
3 −σ2

3 . . . 0

0 −σ2
3 σ2

3 + σ2
4 . . . 0

...
...

...
. . .

...

0 0 0 . . . σ2
N−1 + σ2

N


µ = (g2 − g1, . . . , gN − gN−1)′ .

From the definition of the gap process Z, one can immediately see that there a.s. no triple

and simultaneous collisions if and only if the gap process Z does not hit non-smooth parts of

the boundary (intersections of two or more faces):⋃
1≤i<j≤d

(Si ∩ Sj) .

The main result of Chapter 4, which corresponds to the author’s paper [103], is as follows.

Under some additional technical conditions, an SRBMd(R, µ,A) a.s. does not hit non-smooth

parts of the boundary if and only if

RD +DR′ ≥ 2A, (1.5)

where D = diag(A) is a d × d-diagonal matrix with the same diagonal entries as A. Then

we translate this condition into the language of σ2
1, . . . , σ

2
N .

Similar method applies to particular types of collisions, as in Examples 1.2.2, 1.2.3, 1.2.4.

Then, we find sufficient condition when an SRBMd(R, µ,A) does not hit a particular edge

of the boundary ∂S of the orthant, say {z ∈ S | z1 = z2 = 0} = S1 ∩ S2. (This particular

edge corresponds to the collision X(1)(t) = X(2)(t) = X(3)(t).)



9

1.4 Infinite Atlas Model

Consider now infinite systems of competing Brownian particles, in particular, the infinite

Atlas model. They are defined in the same way as finite systems, only the ranks of the

particles go from 1 to ∞, from bottomt to top. So there is the lowest particle at every

moment, but no highest particle. The gap process is defined similarly; now it is an R∞+ -

valued process.

Existence and uniqueness of such models (even the weak one) is much harder to establish

than that for finite systems: see, for example, [105], [89], and [59]. We find some new results

about existence and uniqueness in Chapter 7 of this thesis.

In the paper [89], it was shown that for the Atlas model with N particles, the gap process

has the following stationary distribution:

π(N) :=
N−1⊗
k=1

E
(

2
N − k
N

)
. (1.6)

Also, it was proved in [89] that for the infinite Atlas model, the gap process has the following

stationary distribution:

π∞ :=
∞⊗
k=1

E(2). (1.7)

The idea of the proof is as follows. We approximate the infinite Atlas model by finite Atlas

models. Fsor every k ≥ 1, we have:

2
N − k
N

→ 2 as N →∞,

and so, in some sense, π(N) “tends” to π∞.

In this thesis, we prove the following results. (The convergence in R∞ is with respect to

the metric ρ, that is, componentwise.)

Theorem 1.4.1. (i) For any copy of the the infinite Atlas model, the family of random

variables (Z(t), t ≥ 0) is tight in R∞+ with respect to the metric ρ. Moreover, any weak limit

point of Z(t) as t → ∞ is stochastically dominated by π∞. In other words, if (tj)j≥1 is an
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increasing sequence of positive time moments such that

tj →∞ and Z(tj)⇒ ν, then ν � π∞.

(ii) Let ν be a probability measure on R∞+ such that π∞ � ν. Start the infinite Atlas

model with Z(0) v ν. Such model exists in the strong sense and is pathwise unique, and

Z(t)⇒ π∞, t→∞.

(iii) Consider an infinite Atlas model such that for some probability measure ν on R∞+ we

have: Z(t) v ν for all t ≥ 0. Then ν � π∞.

In other words, any limit point of the gap process has gaps stochastically smaller than

π∞. Moreover, if we start the infinite Atlas model with gaps stochastically larger than π∞,

then the gaps will converge to π∞. However, in other cases (for example, when initially the

gaps are stochastically smaller than π∞), we do not know whether the weak limit exists.

1.5 Sketch of Proof for the Infinite Atlas Model

We approximate the infinite Atlas model X by a finite Atlas model of N particles

X(N) =
(
X

(N)
1 , . . . , X

(N)
N

)′
.

Rank these particles:

X
(N)
(1) (t) ≤ X

(N)
(2) (t) ≤ . . . ≤ X

(N)
(N) (t),

Then, as mentioned before in (1.6), the gap process for the finite Atlas model X(N):

Z(N) = (Z(N)(t), t ≥ 0), Z(N)(t) = (Z
(N)
1 (t), . . . , Z

(N)
N (t))′,

defined by

Z
(N)
k (t) = X

(N)
(k+1)(t)−X

(N)
(k) (t), k = 1, . . . , N − 1, t ≥ 0,

has a unique stationary distribution

π(N) :=
N−1⊗
k=1

E
(

2
N − k
N

)
,



11

and converges weakly to this distribution as t → ∞, regardless of the initial distribution.

Suppose that the initial conditions for ranked particles are the same:

X
(N)
(k) (0) = X(k)(0), k = 1, . . . , N.

You can turn an infinite Atlas model into a finite Atlas model with N particles by removing

the (N + 1)st, (N + 2)nd, etc. ranked particles X(N+1), X(N+2), . . . When two particles X(N)

and X(N+1) in the infinite Atlas model collide, they are pushed apart (because the model

stipulates that X(N)(t) ≤ X(N+1)(t)). The particle X(N) “feels the pressure” from X(N+1)

from above.

Now comes the crucial step. Here, we use the comparison statement (proved in [100,

Corollary 3.9], see also Corollary 4.3.8 in Chapter 4 of this thesis). This “pressure from

above” decreases the gaps

Z1 = X(2) −X(1), . . . , ZN−1 = X(N) −X(N−1)

between adjacent particles X(1), . . . , X(N). In other words, these gaps are smaller in the

infinite Atlas model than they would be without X(N+1), X(N+2), . . ., that is, than they would

be in the finite Atlas model with N particles. We can write this as

Zk(t) ≤ Z
(N)
k (t), k = 1, . . . , N − 1, t ≥ 0. (1.8)

But

Z(N)(t) =
(
Z

(N)
1 (t), . . . , Z

(N)
N (t)

)′
⇒ π(N), t→∞.

So for k = 1, . . . , N − 1,

Z
(N)
k (t)⇒ E

(
2
N − k
N

)
, t→∞. (1.9)

Combining (1.8) and (1.9), we get: for every component Zk(t) of the gap process, every weak

limit point is stochastically dominated by E(2(N−k)/N) for any N > k. But N is arbitrary,

and

2
N − k
N

→ 2, N →∞,
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for any fixed k. So any weak limit point of Zk(t) is stochastically dominated by E(2), for

each k = 1, 2, . . . Slightly changing the argument, we can show a stronger statement: any

weak limit point of Z(t) is stochastically dominated by

π∞ :=
∞⊗
k=1

E(2).

This proves part (i) of Theorem 1.4.1. Let us prove part (ii). Suppose we start the infinite

Atlas model X with the gaps stochastically larger than π∞: Z(0) � π∞. The gap process

is stochastically ordered: if we start from (stochastically) larger gaps, then for every t ≥ 0

the gaps will also be stochasticallfy larger. For the finite Atlas model, this follows from

Corollary 4.3.10(ii) from Chapter 4, which corresponds to [100, Corollary 3.11(ii)]. For the

infinite Atlas model, we show this fact in this chapter, in Corollary 7.3.6, using approximation

by finite Atlas models.

As mentioned earlier, the distribution π∞ is a stationary distribution for the gap process

of the infinite Atlas model. In other words, suppose we start a copy X of the infinite Atlas

model with the corresponding gap process Z initially distributed as π∞: Z(0) v π∞. Then

Z(t) v π∞ for all t ≥ 0. But Z(0) � π0 v Z(0), so by the stochastic ordering of Z we

conclude: Z(t) � Z(t) v π∞ for all t ≥ 0. On the other hand, any weak limit point of Z, as

we have just shown, must be stochastically smaller than π∞. It follows that Z(t) ⇒ π∞ as

t→∞.

Finally, the part (iii) of Theorem 1.4.1 follows directly from part (i).

1.6 Organization of the Thesis

Chapter 2 provides background and states already known facts about an SRBM in the

orthant. Chapter 3 does the same for systems of competing Brownian particles. These two

chapters contain almost exclusively the results which are already known. The next four

chapters correspond to the four papers written by the author (which constitute the core of

thesis):
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• Chapter 4, which corresponds to the paper [100], develops comparison techniques, on

which the subsequent proofs are based; the reader has seen some of these techniques

in the sketch of proof of Theorem 1.4.1.

• Chapter 5, which corresponds to the paper [103], proves the condition (1.5), as well as

Theorem 1.2.1 (as a corollary);

• Chapter 6, which corresponds to the paper [102], deals with statements like Exam-

ples 1.2.2, 1.2.3, 1.2.4. We prove a more general result and get these examples as

corollaries;

• Chapter 7, which corresponds to the paper [101], proves results about infinite systems,

including Theorem 1.4.1. We also added proofs of already known statements from [105]

and [59] to this chapter for the sake of completeness.

Chapter 8 is devoted to some related infinite systems of Brownian particles: double-sided

infinite systems and systems with nonlinear drifts. This material was not included in the

paper [101].
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Chapter 2

SEMIMARTINGALE REFLECTED BROWNIAN MOTION
(SRBM) IN THE ORTHANT

Fix d ≥ 2, the dimension. Let S = Rd
+ be the d-dimensional positive orthant. Let

us loosely describe an S-valued stochastic process Z = (Z(t), t ≥ 0), which is called a

semimartingale reflected Brownian motion, shortly SRBM, in the orthant S. First, let us

describe its parameters: a drift vector µ ∈ Rd, a symmetric positive definite d×d covariance

matrix A, and another d × d reflection matrix R. The process Z = (Z(t), t ≥ 0), which is

also denoted by SRBMd(R, µ,A), has the following properties:

(i) it behaves as a d-dimensional Brownian motion with drift vector µ and covariance

matrix A in the interior of S;

(ii) for each i = 1, . . . , d, at the face Si = {z ∈ S | zi = 0}, it is reflected according to the

direction ri, the ith column of R.

If ri = ei, which is the ith standard unit vector in Rd, then the reflection on the face Si

is called normal. Otherwise, it is called oblique.

First, we describe the one-dimensional version of this process: a reflected Brownian mo-

tion on the positive half-line R+, which was introduced in the articles [107], [108] by A.

V. Skorohod. Then we introduce the deterministic version of this process: the Skorohod

problem, and use it to define an SRBM in the orthant. Later, we list some relevant properties

of this process (without proofs) and conduct a literature review.
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2.1 Reflected Brownian Motion on the Half-Line

Consider a Brownian motion B = (B(t), t ≥ 0) in dimension one, with zero drift and unit

diffusion. Then the process

Z = (Z(t), t ≥ 0), Z(t) := |B(t)|, t ≥ 0,

is called a reflected Brownian motion on R+. It behaves as a Brownian motion as long as it

stays inside the half-line, that is, in (0,∞). When it hits zero, it is reflected in the positive

direction, so that it cannot deviate to the negative half-line. Another way to represent the

process Z is as follows:

Z(t) = W (t) + L(t), (2.1)

where

W (t) = Z(0) +

∫ t

0

sign(B(s))dB(s), t ≥ 0

is another version of one-dimensional Brownian motion, and L = (L(t), t ≥ 0) is a nonde-

creasing process with L(0) = 0, which can increase only when Z(t) = 0. We can write the

latter property in the form of a Stieltjes integral:∫ ∞
0

Z(t)dL(t) = 0.

One way to think about this is that dL is the minimal amount of push required to keep

Brownian motion W to the right of zero. When W “wants” to wander into the negative

half-line, we “help” it stay on the positive half-line, but the amount of this “help” is as small

as possible. The process L is called the local time of the Brownian motion W at zero; its

equivalent representation (which is usually taken as the definition) is

L(t) := lim
ε↓0

1

2ε
mes {s ∈ [0, t] | −ε ≤ W (s) ≤ ε} .

(Sometimes they refer to the process (1/2)L, rather than L, as the local time.) Respresenta-

tion (2.1), which is known as Tanaka formula, can be found in standard stochastic calculus

textbooks, such as [73, Proposition 3.6.8], or [97, Chapter 6, Theorem 1.2]. Consider now a
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deterministic analogue of the Tanaka formula, which is called the Skorohod problem in the

positive half-line.

Definition 1. Take a continuous function X : R+ → R with X (0) ≥ 0. A solution to the

Skorohod problem in R+ with driving function X is a continuous function Z : R+ → R+ such

that there exists another continuous function L : R+ → R with the following properties:

(i) X (t) = Z(t) + L(t), t ≥ 0;

(ii) L is a nondecreasing function with L(0) = 0, which can increase only when
∫∞

0
Z(t)dL(t) =

0.

The function L is called the boundary term.

The following theorem was proved in the articles [107], [108], which pioneered the study

of reflected Brownian motion.

Proposition 2.1.1. For every continuous function X : R+ → R with X (0) ≥ 0, there exists

a unique solution to the Skorohod problem in R+ with driving function X , which is given by

the formula

Z(t) = X (t)− L(t), L(t) := max
[0,t]

[−X (s)]+ .

Next, we move to the multidimensional version of the Skorohod problem.

2.2 The Skorohod Problem in the Orthant

The Skorohod problem in the orthant has one feature which distinguishes it from its one-

dimensional version: direction of reflection matters. That is, in the one-dimensional case we

had only one possible direction of reflection: rightward, back to the positive half-line R+.

Now, consider the multidimensional positive orthant Rd
+ instead of R+. As the Brownian

motion (or any other driving function) hits a face of the boundary, it can be reflected normally

as well as obliquely. In the following definition, we make this observation rigorous.

Definition 2. Take a continuous function X : R+ → Rd with X (0) ∈ S. A solution to the

Skorohod problem in the positive orthant S with reflection matrix R and driving function X
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is a continuous function Z : R+ → S such that there exists another continuous function

L : R+ → Rd with the following properties:

(i) for every t ≥ 0, we have: Z(t) = X (t) +RL(t);

(ii) for every i = 1, . . . , d, the function Li is nondecreasing, satisfies Li(0) = 0 and can

increase only when Zi(t) = 0, that is, when Z(t) ∈ Si. We can write the last property

formally as
∫∞

0
Zi(t)dLi(t) = 0.

The function L is called the vector of boundary terms, and its component Li is called the

boundary term, corresponding to the face Si, for i = 1, . . . , d.

Remark 1. This definition can also be stated for a finite time horizon, that is, for functions

X ,L,Z defined on [0, T ] instead of R+.

For which matrices R do we have existence and uniqueness of a solution to the Skorohod

problem? We need to introduce some definitions.

Definition 3. Take a d× d-matrix R = (rij)1≤i,j≤d. It is called a reflection matrix if rii = 1

for i = 1, . . . , d. It is called nonnegative if all its elements are nonnegative, that is, if R ≥ 0;

it is called strictly nonnegative if it is nonnegative and rii > 0 for i = 1, . . . , d. It is called an

S-matrix if there exists a vector u ∈ Rd, u > 0 such that Ru > 0. Any submatrix of R of the

form [R]I , where I ⊆ {1, . . . , d} is a nonempty subset, is called a principal submatrix (this

includes the matrix R itself). The matrix R is called completely-S if each of its principal

submatrices is an S-matrix. It is called a Z-matrix if rij ≤ 0 for i 6= j. It is called strictly

inverse-nonnegative if it is invertible and its inverse R−1 is a strictly nonnegative matrix. It

is called a nonsingular M-matrix if it is both completely-S and a Z-matrix.

The following lemma is a useful characterization of reflection nonsingular M-matrices.

Lemma 2.2.1. Suppose R is a d × d reflection matrix. Then the following statements are

equivalent:

(i) R is a nonsingular M-matrix;

(ii) R is a strictly inverse-nonnegative Z-matrix;

(iii) R = Id −Q, where Q is a nonnegative matrix with spectral radius less than 1.
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Proof. (i) ⇒ (iii). Use [55, Theorem 2.5.3]. Since R is completely-S, it satisfies condition

12 from this theorem. Therefore, it satisfies condition 2 from this theorem. We get the

following representation: R = γId − Q, where γ := max1≤i≤d rii = 1, and a d × d-matrix Q

is nonnegative with spectral radius less than one. (See the beginning of [55, Section 2.5.4].)

(iii) ⇒ (ii). By [85, Section 7.10], we can represent R−1 as Neumann series:

R−1 = Id +Q+Q2 + . . .

Since Q is nonnegative, R−1 is also nonnegative, and the diagonal elements of R−1 are strictly

positive (and even greater than or equal to 1).

(ii)⇒ (i). Apply [55, Theorem 2.5.3] again: condition 17 implies condition 12. Therefore,

there exists x ∈ Rd, x > 0 such that Rx > 0, so R is an S-matrix. Take a principal submatrix

R̃ of R and show that it is also an S-matrix. Let R̃ := [R]I , where I ( {1, . . . , d} is a

nonempty set. Let x̃ := [x]I . Then rij ≤ 0 for i ∈ I and j ∈ Ic := {1, . . . , d} \ I, and

(
R̃x̃
)
i

=
∑
j∈I

rijxj ≥
d∑
i=1

rijxj = (Rx)i > 0, i ∈ I.

Therefore, x̃ > 0 and R̃x̃ > 0. So every principal submatrix of R is an S-matrix, which

proves that the matrix R is completely-S.

Now, we can formulate the main existence and uniqueness result for the Skorohod prob-

lem, proved in [51, Theorem 1], see also [125, Theorem 2.1].

Proposition 2.2.2. Suppose R is a d× d reflection nonsingular M-matrix. Then for every

continuous driving function X : R+ → Rd with X (0) ∈ S, the Skorohod problem in the

orthant S with reflection matrix R has a unique solution.

2.3 SRBM in the Orthant: Definition, Existence and Uniqueness Results

Let us rigorously define an SRBM in the orthant. Take the parameters R,A, µ, described

above. Assume the usual setting: a filtered probability space (Ω,F , (Ft)t≥0,P) with the

filtration satisfying the usual conditions.



19

Definition 4. Suppose B = (B(t), t ≥ 0) is an (Ft)t≥0-Brownian motion in Rd with drift

vector µ and covariance matrix A. A solution Z = (Z(t), t ≥ 0) to the Skorohod problem

in S with reflection matrix R and driving function B is called a semimartingale reflected

Brownian motion, or SRBM, in the positive orthant S with reflection matrix R, drift vector

µ and covariance matrix A. It is denoted by SRBMd(R, µ,A). The process B is called the

driving Brownian motion. We say that Z starts from x ∈ S if Z(0) = x a.s.

We are ready to state an existence and uniqueness result, shown in [51]. (It was shown

in this article for a slightly more resitricted case, but it can be readily generalized for the

given conditions.) This is not the most general result (which we shall discuss a bit later),

but it is sufficient for our purposes.

Proposition 2.3.1. Suppose R is a d × d reflection nonsingular M-matrix. Take a vector

µ ∈ Rd and a d×d positive definite symmetric matrix A. For every x ∈ S, there exists in the

strong sense an SRBMd(R, µ,A) starting from x, and this process is pathwise unique. These

processes, starting from different x ∈ S, form a Feller continuous strong Markov family.

The part about existence and uniqueness follows immediately from Proposition 2.2.2.

Now, for the sake of completeness, let us state the most general result, for which the reader

might want to see [96], [115], [18, Theorem 3.1, Theorem 3.2], and [125, Theorem 2.3].

However, we shall not need this result in our thesis.

Proposition 2.3.2. Take a drift vector µ ∈ Rd and a positive definite symmetric d×d-matrix

A. Fix a starting point x ∈ S. Then the SRBMd(R, µ,A), starting from x, exists in a weak

sense if and only if R is completely-S. In this case, this process is pathwise unique. These

processes, starting from different x ∈ S, form a Feller continuous strong Markov family.

2.4 Stationary Distributions and Convergence

Consider the process Z = (Z(t), t ≥ 0), which is an SRBMd(R, µ,A) in the orthant S = Rd
+.

If it starts from x ∈ S, then we denote the corresponding probability measure by Px, and
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the corresponding expectation by Ex. This is a standard notation in probability. Note that

we can also start Z from a distribution Z(0) v π on S, rather than a fixed point x ∈ S.

Such process exists and is unique in a strong sense (a trivial corollary of Proposition 2.3.1).

We denote the corresponding probability measure and expectation by Pπ and Eπ.

Definition 5. We say that the distribution π on S is a stationary distribution for the process

Z if

Z(0) v π ⇒ Z(t) v π for every t ≥ 0.

In other words, if we start the SRBM from the initial distribution Z(0) v π, then at

every moment this process has the same distribution Z(t) v π.

Definition 6. Assume that Z has a stationary distribution π. It is ergodic if this distribution

is unique and for every x ∈ S we have:

‖P t(x, ·)− π(·)‖TV → 0, t→∞.

We say that Z is exponentially ergodic if there exists κ > 0 such that for every x ∈ S we

have:

‖P t(x, ·)− π(·)‖TV ≤ C(x)e−κt,

where C(x) > 0.

In this section, we shall enunciate a few known facts about stationary distributions and

convergence. We refer the reader to a comprehensive survey [125].

The following result was proved in [52, Theorem 7.1, Theorem 8.1(i)], see also the afore-

mentioned survey [125, Lemma 3.1(i), (ii)].

Proposition 2.4.1. If the process Z has a stationary distribution, then this stationary dis-

tribution is unique. Moreover, for each i = 1, . . . , d, there exists a finite Borel measure νi on

the face Si such that for every bounded Borel measurable f : Si → R and for every t ≥ 0 we

have:

Eπ

[∫ t

0

f(Z(s))dYi(s)

]
= t

∫
Si

f(x)dνi(x).
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These ν1, . . . , νd are called boundary measures corresponding to the stationary distribution

π. Now, let us state an equivalent characterization of existence of a stationary distribution,

which is useful in the theory of Markov processes. For a subset A ⊆ S, let τA := inf{t ≥ 0 |

Z(t) ∈ A} be the hitting time of A.

Definition 7. We say that the process Z is positive recurrent if for every x ∈ S and every

closed A ⊆ S with positive Lebesgue measure we have:

ExτA <∞.

Informally, the process is positive recurrent if it visits every “sufficiently large” set, and

the visit occurs “not too late”. The following fact follows from the general theory of Markov

processes and is proved in [18].

Proposition 2.4.2. The process Z has a stationary distribution if and only if it is positive

recurrent.

In this subsection, we note that if the process Z is positive recurrent, then it converges to

its stationary distribution exponentially fast. Let P t(x,A) ≡ Px(Z(t) ∈ A) be the transition

function of Z. Then P t(x, ·) is a probability distribution on S.

Proposition 2.4.3. If Z is positive recurrent, then it is ergodic.

The following proposition was proved in [18, Theorem 3.4].

Proposition 2.4.4. Suppose that Z is positive recurrent. Then R is invertible and R−1µ < 0.

Definition 8. We say that Z satisfies the fluid path condition if for every x ∈ S, the solution

z(t) to the Skorohod problem with driving function x + µt and reflection matrix R has the

property limt→∞ z(t) = 0.
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Proposition 2.4.5 ([22], [9]). Suppose that Z satisfies the fluid path condition. Then the

process Z is positive recurrent and exponentially ergodic.

Proposition 2.4.6 ([12]). If R is a nonsingular M-matrix and R−1µ < 0, then Z satisfies

the fluid path condition.

Let us summarize results for a special case when R is a nonsingular M-matrix. This is

the case which it used for competing Brownian particles. The next corollary is an immediate

consequence of Propositions 2.4.4, 2.4.5, and 2.4.6.

Corollary 2.4.7. Suppose R is a nonsingular M-matrix. Then Z is positive recurrent

(or, equivalently, has a stationary distribution) if and only if R−1µ < 0. In this case, this

stationary distribution is unique and the process Z is exponentially ergodic.

The next proposition was proved for d = 2 in [54] and for d = 3 in [8].

Proposition 2.4.8. For dimensions d = 2 and d = 3, the fluid path condition is not only

sufficient but necessary for positive recurrence. Therefore, in these dimensions the fluid path

condition implies that R is invertible and R−1µ < 0.

Remark 2. In dimension d = 2, the fluid path condition is equivalent to R−1µ < 0. In

dimension d = 3, this is no longer true; see [8].

For a function f : S → R, define

Dif(x) ≡ ri · ∇f(x), i = 1, . . . , d; Af(x) :=
1

2

d∑
i=1

d∑
j=1

aij
∂2f(x)

∂xi∂xj
.

Definition 9. Take a probability distribution π on S and finite Borel measures ν1, . . . , νd on

S1, . . . , Sd. We say that this collection (π, ν1, . . . , νd) satisfies the Basic Adjoint Relationship

if for every f ∈ C2
b (S) we have:∫

S

Af(x)dπ(x) +
d∑
i=1

∫
Si

Dif(x)dνi(x) = 0.
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Theorem 2.4.9 ([16]). If π is a stationary distribution, then it satisfies the Basic Adjoint Re-

lationship together with the corresponding boundary measures. Conversely, if (π, ν1, . . . , νd)

satisfy the Basic Adjoint Relationship, then π is the stationary distribution, and ν1, . . . , νd

are corresponding boundary measures.

Definition 10. We say that the process Z satisfies the skew-symmetry condition if

rijajj + rjiaii = 2rij, 1 ≤ i < j ≤ d.

We can also write it as follows:

RD +DR′ = 2A,

where D = diag(A) is the diagonal d× d-matrix with the same diagonal entries as A.

Definition 11. We say that a distribution π on S has product form if for some distributions

π1, . . . , πd on R+ we have:

π(dx) =
d⊗
i=1

πi(dxi), x = (x1, . . . , xd)
′.

Proposition 2.4.10 ([52]). Assume that R is a nonsingular M-matrix and b := R−1µ < 0.

The stationary distribution π of Z has product form if and only if it satisfies the skew-

symmetry condition. In this case,

π =
d⊗
i=1

E
(
2a−1

ii bi
)
.

Let us also mention a comparison result from [76], see also [74], [75], [78], [93], [77].

This is part of Theorem 4.2.1 from Chapter 4: the part concerning solutions of the Skorohod

problem. We reprove it in this thesis, and also prove the other part of this theorem concerning

boundary terms.

2.5 Motivation and Literature Review

As mentioned in Section 2.1, the study of the reflected Brownian motion started in the

papers [107], [108], see also the book [43], and an article [82]. Multidimensional (normally
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and obliquely) reflected Brownian motion in general regions was also studied in many other

articles, including [114] (convex regions), [119], [120], [81], [111], as well as [51], [53], [52],

[125] (positive multidimensional orthant).

Studying an SRBM in the orthant is motivated by queueing theory. An SRBM in the

orthant is the heavy traffic limit for series of queues, when the traffic intensity at each queue

tends to one, see [94], [95], [47], [46]; see also related works [48], [62], [80]. We can also define

an SRBM in general convex polyhedral domains in Rd, see [17]. An SRBM in the orthant

and in convex polyhedra has been extensively studied, see the survey [125]. A special case

of a convex polyhedron is a two-dimensional wedge, see [121], [122], [116], [123].

An SRBM in the orthant was introduced and defined in [51] and [52]. Stationary dis-

tributions were found in [50], [53], [124], [16] (the two latter papers also study the case of

convex polyhedra). General existence and uniqueness result was proved in [96] (necessaity)

and [115] (sufficiency). The fluid path condition for positive recurrence was established in

[22], see also [12] for some simpler sufficient conditions (which are stronger than the fluid

path condition). The fluid path condition is not only sufficient but necessary for positive

recurrence in dimensions d = 2, see [54], and d = 3, see [8] (and also related papers [15],

[23]). Under the fluid path condition, an SRBM is not only positive recurrent but converges

exponentially fast to the stationary distribution, see [9]. Some properties of the stationary

distribution in two dimensions were studied in [49].

An invariance principle for an SRBM in the orthant was formulated in [126], and for more

general cases in [127]. Numerical methods for finding the stationary distribution are studied

in [14]. Comparison techniques similar to ones discussed in Chapter 4 (which corresponds

to the author’s paper [100]) are studied in [74], [75], [78], [93], [76], [77].

The Ph.D. thesis [18, Chapter 3] by Jim Dai is a useful collection of facts about an

SRBM in the orthant (some of them with proofs).

The Ph.D. thesis [88, Chapter 5] by Janosch Ortmann deals with a generalized reflected

Brownian motion in a polyhedral domain, which is a solution to an SDE. See also the paper

[86].
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Chapter 3

COMPETING BROWNIAN PARTICLES

This chapter is organized as follows. First, we define classical systems of competing

Brownian particles, where particles are presumed to have “the same mass”; that is, when

two particles collide, the local time of collision is split evenly between them. Then, we

modify this model to allow for different prpportions of split; these systems have asymmetric

collisions. We then introduce a deterministic analogue of competing Brownian particles: it

is called simply a system of competing particles. It bears the same relation to competing

Brownian particles as the Skorohod problem to an SRBM. We show that the gap process for

systems of competing particles is actually a solution to the Skorohod problem in the orthant.

Next, we state some (already known) properties and results for competing Brownian particles.

Then we move to infinite classical systems of competing Brownian particles. We state the

definition and outline some already known results.

Then we discuss the McKean-Vlasov equation, which is a continuous analogue of a system

of competing Brownian particles. Next, we give a brief introduction to Stochastic Portfolio

Theory, a newly developed area of Financial Mathematics, and mention its connections with

the theory of competing Brownian particles. Finally, we conduct a literature review and

mention some connections to other areas of probability.

3.1 Classical Systems of Competing Brownian Particles

In this subsection, we use definitions from [3]. Assume the usual setting: a filtered probability

space (Ω,F , (Ft)t≥0,P) with the filtration satisfying the usual conditions. Let N ≥ 2 (the

number of particles). Fix parameters

g1, . . . , gN ∈ R; σ1, . . . , σN > 0.



26

We wish to define a system of N Brownian particles in which the kth smallest particle moves

a Brownian motion with drift gk and diffusion σ2
k. We resolve ties in the lexicographic order,

as described in the Introduction.

Definition 12. Take i.i.d. standard (Ft)t≥0-Brownian motions W1, . . . ,WN . For a con-

tinuous RN -valued process X = (X(t), t ≥ 0), X(t) = (X1(t), . . . , XN(t))′, let us define

pt, t ≥ 0, the ranking permutation for the vector X(t): this is a permutation on {1, . . . , N}

such that:

(i) Xpt(i)(t) ≤ Xpt(j)(t) for 1 ≤ i < j ≤ N ;

(ii) if 1 ≤ i < j ≤ N and Xpt(i)(t) = Xpt(j)(t), then pt(i) < pt(j). (This permutation

always exists and is unique.)

Suppose the process X satisfies the following SDE:

dXi(t) =
N∑
k=1

1(pt(k) = i) [gk dt+ σk dWi(t)] , i = 1, . . . , N. (3.1)

Then this process X is called a classical system of N competing Brownian particles with drift

coefficients g1, . . . , gN and diffusion coefficients σ2
1, . . . , σ

2
N . For i = 1, . . . , N , the component

Xi = (Xi(t), t ≥ 0) is called the ith named particle. For k = 1, . . . , N , the process

Yk = (Yk(t), t ≥ 0), Yk(t) := Xpt(k)(t) ≡ X(k)(t),

is called the kth ranked particle. They satisfy Y1(t) ≤ Y2(t) ≤ . . . ≤ YN(t), t ≥ 0. If pt(k) = i,

then we say that the particle Xi(t) = Yk(t) at time t has name i and rank k.

The coefficients of the SDE (3.1) are piecewise constant functions of X1(t), . . . , XN(t), so

weak existence and uniqueness in law for such systems follow from [6].

A particular case

g1 = 1, g2 = . . . = gN = 0, σ1 = . . . = σN = 1

is called the Atlas model.
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Definition 13. A triple collision at time t occurs if there exists a rank k = 2, . . . , N − 1

such that Yk−1(t) = Yk(t) = Yk+1(t).

The following result was proved in [59].

Theorem 3.1.1. If τ is the first moment of a triple collision, then the classical system of

competing Brownian particles has strong existence and pathwise uniqueness up to the moment

τ . In particular, if there are a.s. no triple collisions at any time t ≥ 0, then strong existence

and pathwise uniqueness hold on the infinite time horizon.

The question whether strong solution exists after the first triple collision is an open

problem.

Now, let us find an equation for the ranked particles Yk. Define the processes B1 =

(B1(t), t ≥ 0), . . . , BN = (BN(t), t ≥ 0) as follows:

Bk(t) =
N∑
i=1

∫ t

0

1(ps(k) = i)dWi(s).

One can calculate that 〈Bi, Bj〉t = δijt; therefore, these are i.i.d. standard Brownian motions.

For k = 2, . . . , N , let the process L(k−1,k) = (L(k−1,k)(t), t ≥ 0) be the semimartingale local

time at zero of the nonnegative semimartingale Yk−Yk−1. For notational convenience, we let

L(0,1)(t) ≡ 0 and L(N,N+1)(t) ≡ 0. Then the ranked particles Y1, . . . , YN satisfy the following

equation:

Yk(t) = Yk(0) + gkt+ σkBk(t) +
1

2
L(k−1,k)(t)−

1

2
L(k,k+1)(t), k = 1, . . . , N. (3.2)

The equation (3.2) was deduced in [2, Lemma 1] and [4, Theorem 2.5]; see also [3, Section

3] and [57, Chapter 3].

The process L(k−1,k) is called the local time of collision between the particles Yk−1 and

Yk. One can regard the local time L(k−1,k)(t) to be the total amount of push between the

(k − 1)st and the kth ranked particles Yk−1 and Yk accumulated by time t. This amount of

push is necessary and sufficient to keep the particle Yk to the right of the particle Yk−1, so
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that Yk−1(t) ≤ Yk(t). Indeed, “left to themselves”, the particles Yk−1 and Yk “want” to move

as Brownian motions, which will eventually clearly violate the condition Yk−1(t) ≤ Yk(t).

When these two particles collide, the amount of push is split evenly between them: the

amount (1/2)L(k−1,k)(t) goes to the right-sided particle Yk and pushes it to the right; the

equal amount (1/2)L(k−1,k)(t) (with the minus sign) goes to the left-sided particle Yk−1 and

pushes it to the left. One possible physical interpretation of this phenomenon: the ranked

particles have the same mass; so, when they collide, they get the same amount of push.

The local time process L(k−1,k) has the following properties: L(k−1,k)(0) = 0, L(k−1,k) is

nondecreasing, and it can increase only when Yk−1(t) = Yk(t), that is, when particles with

ranks k − 1 and k collide. We can formally write the last property as∫ ∞
0

1(Yk(t) 6= Yk−1(t))dL(k−1,k)(t) = 0. (3.3)

3.2 Systems of Competing Brownian Particles with Asymmetric Collisions

If we change coefficients 1/2 in (3.2) to some other values, we get the model from the paper

[71]. The local times in this new model are split unevenly between the two colliding particles,

as if they had different mass. Let us now formally define this model. First, let us describe

its parameters. Let N ≥ 2 be the quantity of particles. Fix real numbers g1, . . . , gN and

positive real numbers σ1, . . . , σN , as before. In addition, fix real numbers q+
1 , q−1 , . . . , q

+
N , q−N ,

satisfying the following conditions:

q+
k+1 + q−k = 1, k = 1, . . . , N − 1; 0 < q±k < 1, k = 1, . . . , N.

Definition 14. Take i.i.d. standard (Ft)t≥0-Brownian motions B1, . . . , BN . Consider a

continuous adapted RN -valued process

Y = (Y (t), t ≥ 0), Y (t) = (Y1(t), . . . , YN(t))′,

and N − 1 continuous adapted real-valued processes

L(k−1,k) = (L(k−1,k)(t), t ≥ 0), k = 2, . . . , N,
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with the following properties:

(i) Y1(t) ≤ . . . ≤ YN(t), t ≥ 0,

(ii) the process Y satisfies the following system of equations:

Yk(t) = Yk(0) + gkt+ σkBk(t) + q+
k L(k−1,k)(t)− q−k L(k,k+1)(t), k = 1, . . . , N. (3.4)

We let L(0,1)(t) ≡ 0 and L(N,N+1)(t) ≡ 0 for notational convenience.

(iii) for each k = 2, . . . , N , the process L(k−1,k) = (L(k−1,k)(t), t ≥ 0) has the properties

mentioned above: L(k−1,k)(0) = 0, L(k−1,k) is nondecreasing and satisfies (3.3).

Then the process Y is called a system of N competing Brownian particles with asymmetric

collisions, with drift coefficients g1, . . . , gN , diffusion coefficients σ2
1, . . . , σ

2
N , and parameters

of collision q±1 , . . . , q
±
N . For each k = 1, . . . , N , the process Yk = (Yk(t), t ≥ 0) is called the

kth ranked particle. For k = 2, . . . , N , the process L(k−1,k) is called the local time of collision

between the particles Yk−1 and Yk.

The state space of the process Y is

WN := {y = (y1, . . . , yN)′ ∈ RN | y1 ≤ y2 ≤ . . . ≤ yN}.

Strong existence and pathwise uniqueness for Y and L are proved in [71, Section 2.1]; they

also follow from Lemma 3.4.3 below.

Remark 3. Triple and simultaneous collisions for these systems are defined similarly to Def-

initions 22 and 23.

In the case of asymmetric collisions, we can also define a corresponding named system of

competing Brownian particles.

Definition 15. Consider a continuous adapted process

X = (X(t), t ≥ 0), X(t) = (X1(t), . . . , XN(t))′.

Suppose pt is the ranking permutation of X(t) for t ≥ 0, as before, and

Yk(t) ≡ Xpk(t)(t), k = 1, . . . , N, t ≥ 0,
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Let L(k−1,k) = (L(k−1,k)(t), t ≥ 0) be the semimartingale local time at zero of Yk − Yk−1, for

k = 2, . . . , N ; and L(0,1)(t) ≡ L(N,N+1)(t) ≡ 0 for notational convenience, as before.

Then this system X = (X1, . . . , XN)′ is governed by the following SDE: for i = 1, . . . , N

and t ≥ 0,

dXi(t) =
N∑
k=1

1(pt(k) = i) (gkdt+ σkdWi(t))

+
N∑
k=1

1(pt(k) = i)
(
q−k − (1/2)

)
dL(k,k+1)(t)

+
N∑
k=1

1(pt(k) = i)
(
q+
k − (1/2)

)
dL(k−1,k)(t).

It is called a system of named competing Brownian particles with drift coefficients (gn)1≤n≤N ,

diffusion coefficients (σ2
n)1≤n≤N , and parameters of collision (q±n )1≤n≤N .

The ranked particles (Y1, . . . , YN) from Definition 15 form a system of ranked competing

Brownian particles in the sense of Definition 14. However, unlike the system Y from Defi-

nition 14, which exists and is unique in a strong sense up to the infinite time horizon, the

system X from Definition 15 is known to have strong solutions only up to the first moment

of a triple collision, see [71]. This provides a motivation to find a condition which guarantees

absense of triple collisions. Here, we prove a necessary and sufficient condition for a.s. lack

of triple collisions.

3.3 General Systems of (non-Brownian) Competing Particles

As mentioned in the Introduction, in this chapter we consider not just systems of competing

Brownian particles, but more general systems, with arbitrary continuous functions instead

of Brownian motions. These general systems are called systems of competing particles; they

might be random or deterministic. Let us now define them.

Definition 16. Fix a continuous function X = (X1, . . . , XN)′ : R+ → RN such that

X(0) ∈ WN . Take parameters of collision: real numbers q+
1 , q

−
1 , . . . , q

+
N , q

−
N which sat-
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isfy (3.5). Consider a continuous function Y = (Y1, . . . , YN)′ : R+ → WN , and other N − 1

continuous functions L(1,2), . . . , L(N−1,N) : R+ → R such that:

(i) Yk(t) = Xk(t) + q+
k L(k−1,k)(t) − q−k L(k,k+1)(t) for k = 1, . . . , N and t ≥ 0 (we let

L(0,1)(t) ≡ 0 and L(N,N+1)(t) ≡ 0 for notational convenience);

(ii) L(k,k+1)(0) = 0 for k = 1, . . . , N − 1;

(iii) L(k,k+1) is nondecreasing for each k = 1, . . . , N − 1;

(iv) L(k,k+1) can increase only when Yk(t) = Yk+1(t); we can write this formally as the

following Stieltjes integral:∫ ∞
0

(Yk+1(t)− Yk(t)) dL(k,k+1)(t) = 0, k = 1, . . . , N − 1.

Then the function Y is called a system of N competing particles with driving function X and

parameters of collisions (q±k )1≤k≤N . The kth component Yk of the function Y is called the kth

ranked particle. The function L(k,k+1) is called the collision term between the kth and the k+

1st ranked particles Yk and Yk+1. The vector-valued function L = (L(1,2), L(2,3), . . . , L(N−1,N))
′

is called the vector of collision terms. We say that this system starts with y, if Y (0) = y.

The gap process is defined as was already shown in the Introduction: this is an RN−1
+ -valued

process

Z = (Z(t), t ≥ 0), Z(t) = (Z1(t), . . . , ZN−1(t))′ ,

Zk(t) = Yk+1(t)− Yk(t), k = 1, . . . , N − 1, t ≥ 0.

Now, for the sake of completeness, we essentially rephrase Definition 14, tying systems

of competing Brownian particles to general systems of competing particles.

Definition 17. Assume the standard probabilistic setting: a filtered probability space

(Ω,F , (Ft)t≥0,P), with the filtration satisfying the usual conditions. Take i.i.d. standard

(Ft)t≥0-Brownian motions B1, . . . , BN and an F0-measurable random vector y ∈ WN . Fix

parameters of collision q+
1 , q

−
1 , . . . , q

+
N , q

−
N which satisfy

q+
n+1 + q−n = 1, 0 < q±n < 1, n = 1, 2, . . . (3.5)
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Also, fix real numbers g1, . . . , gN and positive real numbers σ1, . . . , σN . Consider a system

Y of N competing particles with the driving function

X = (X1, . . . ,XN)′ , Xk(t) = yk + gkt+ σkBk(t), k = 1, . . . , N, t ≥ 0,

and parameters of collision (q±k )1≤k≤N . Then Y is called a (ranked) system of competing

Brownian particles with drift coefficients g1, . . . , gN , diffusion coefficients σ1, . . . , σN , and

parameters of collision (q±k )1≤k≤N . The standard Brownian motions B1, . . . , BN are called

the driving Brownian motions. For each k = 1, . . . , N − 1, the collision term L(k,k+1) is

called the local time of collision between Yk and Yk+1. The vector of collision terms L =

(L(1,2), . . . , L(N−1,N))
′ is called the vector of local times.

Existence and uniqueness for systems of competing particles from Definition 16 is proved

below. (This straightforward proof is completely analogous to the proof for competing Brow-

nian particles, which was given in [71, subsection 2.1].)

We can also define infinite systems of competing particles. Chapter 7 of this thesis, which

is based on the paper [101], deals with infinite systems of competing Brownian particles in

detail. It uses a few facts from Chapter 4.

Definition 18. Let X1, X2, . . . : R+ → R be continuous functions with X1(0) ≤ X2(0) ≤ . . .

Take parameters of collision: real numbers q+
n , q

−
n , n = 1, 2, . . ., which satisfy (3.5).

Consider continuous functions Y1, Y2, . . . : R+ → R, L(1,2), L(2,3), . . . : R+ → R such that

(i), (ii), (iii) and (iv) from Definition 16 are true, for k = 1, 2, . . .. We let L(0,1) ≡ 0, as in

Definition 16. Then the system Y = (Y1, Y2, . . .) is called an infinite system of competing

particles with driving function X = (X1, X2, . . .) and parameters of collision (q±n )n≥1. All

other terms are defined as in Definition 16. Similarly, Definition 17 can be adapted for

infinite number of Brownian particles.

Existence and uniqueness theorem is much harder to prove for infinite systems than for

finite systems. Studying infinite systems of competing Brownian particles is the topic of

Chapter 7 (which corresponds to [101]), where we prove, in particular, existence results.
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In this chapter (see Remark 9), we state and prove a few comparison theorems for infinite

systems, assuming they exist.

Remark 4. In the rest of the thesis, when we use the term parameters of collision, we always

assume that they satisfy condition (3.5).

3.4 Systems of Competing Particles and the Skorohod Problem

The gap process for a system of competing particles is a solution to the Skorohod problem

in the orthant. In particular, the gap process for competing Brownian particles is an SRBM

in the orthant.

Lemma 3.4.1. For a system of competing particles from Definition 16, its gap process is a

solution to the Skorohod problem in the orthant RN−1
+ with reflection matrix

R =



1 −q−2 0 0 . . . 0 0

−q+
2 1 −q−3 0 . . . 0 0

0 −q+
3 1 −q−4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1 −q−N−1

0 0 0 0 . . . −q+
N−1 1


(3.6)

and driving function

(X2 −X1, X3 −X2, . . . , XN −XN−1)′ . (3.7)

Moreover, the matrix R in (3.6) is a reflection nonsingular M-matrix.

Proof. Just use the property (i) from Definition 16; the gap process has the following repre-

sentation:

Zk(t) = Yk+1(t)− Yk(t) = Xk+1(t)−Xk(t) + L(k,k+1)(t)− q+
k L(k−1,k)(t)− q−k+1L(k+1,k+2)(t),

for k = 1, . . . , N − 1, t ≥ 0. That R is a reflection nonsingular M-matrix is proved in [71].

For the sake of completeness, let us exhibit the proof. Let us show that R is an inverse-

positive matrix. Let Q = IN−1 −R. Note that Q is a nonnegative irreducible matrix, all its
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column sums are less than or equal to 1, and the column sum for the first column strictly less

than 1. Therefore, its spectral radius is strictly less than 1. The proof is in [71, Section 2.1]

and [85, p.682]; see also [85, Exercise 8.3.7(b)]. Therefore, R = IN−1 −Q is inverse-positive.

Since, in addition, rij ≤ 0 for i 6= j, by Lemma 2.2.1 we have: R is an M-matrix.

Corollary 3.4.2. For a system of competing Brownian particles from 16, its gap process is

an SRBMN−1(R, µ,A), where R is given by (3.6), and

A =



σ2
1 + σ2

2 −σ2
2 0 0 . . . 0 0

−σ2
2 σ2

2 + σ2
3 −σ2

3 0 . . . 0 0

0 −σ2
3 σ2

3 + σ2
4 −σ2

4 . . . 0 0
...

...
...

...
. . .

...
...

0 0 0 0 . . . σ2
N−2 + σ2

N−1 −σ2
N−1

0 0 0 0 . . . −σ2
N−1 σ2

N−1 + σ2
N


, (3.8)

µ = (g2 − g1, g3 − g4, . . . , gN − gN−1)′ . (3.9)

Proof. This follows directly from Lemma 3.4.1; it was, in fact, already proved in [71, Secton

2.1].

This connection allows us to prove existence and uniqueness for systems of competing

particles.

Lemma 3.4.3. Fix the number of particles N ≥ 2. Also, fix parameters of collision

q±1 , . . . , q
±
N . For every continuous function X : R+ → RN with X(0) ∈ WN , there exists

a unique system of competing particles with this driving function and parameters of collision.

Proof. Consider the gaps between consecutive particles:

Zk(t) := Yk+1(t)− Yk(t), k = 1, . . . , N − 1.

Note that the matrix R from (3.6) is a reflection nonsingular M-matrix, see Lemma 3.4.1,

and the function (3.7) is continuous. Therefore, the solution to the Skorohod problem in
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RN−1
+ with reflection matrix R and driving function (3.7) exists and is unique. But this

solution is the gap process, according to Lemma 3.4.1. Also, note that

Y1(t) = X1(t)− q−1 L(1,2)(t),

Y2(t) = X2(t) + q+
2 L(1,2)(t)− q−2 L(2,3)(t),

. . .

YN(t) = XN(t)− q−NL(N−1,N)(t)

We can find a linear combination of Y1, . . . , YN which eliminates the collision terms: let

α1 = 1, α2 =
q−1
q+

2

, α3 =
q−1 q

−
2

q+
2 q

+
3

, . . . (3.10)

then

Z0(t) ≡ α1X1(t) + . . .+ αNXN(t) = α1Y1(t) + . . .+ αNYN(t).

So we have constructed

Z0(t) = α1Y1(t) + . . .+ αNYN(t), Z1 = Y2 − Y1, . . . , ZN−1 = YN − YN−1.

These functions Z0, Z1, . . . , ZN−1 are unique. Now we can solve for Y1, . . . , YN . Let

Z̃ = (Z0, . . . , ZN−1)′ ∈ RN ,

then Z̃(t) = CY (t), where

C =



α1 α2 α3 . . . αN

−1 1 0 . . . 0

0 −1 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1


Then Y (t) = C−1Z̃(t) for t ≥ 0.
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3.5 The Gap Process for Competing Brownian Particles

The results of this subsection are taken from [3], [2], [57], [71], [53], [52], [124]. We can

define the gap process for finite systems of competing Brownian particles (both classical and

ranked) essentially in the same way as for the infinite Atlas model in the Introduction. For

finite models, the gap process is finite-dimensional.

Definition 19. Consider a finite system (classical or ranked) of N competing Brownian

particles. Let

Zk(t) = Yk+1(t)− Yk(t), k = 1, . . . , N − 1, t ≥ 0.

Then the process Z = (Z(t), t ≥ 0), Z(t) = (Z1(t), . . . , ZN−1(t))′ is called the gap process.

The component Zk = (Zk(t), t ≥ 0) is called the gap between the kth and k + 1st ranked

particles.

The following propositions about the gap process are already known. We present them in

a slightly different form then that from the sources cited above; for the sake of completeness,

we present short outlines of their proofs. Let

R =



1 −q−2 0 0 . . . 0 0

−q+
2 1 −q−3 0 . . . 0 0

0 −q+
3 1 −q−4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1 −q−N−1

0 0 0 0 . . . −q+
N−1 1


, (3.11)

µ = (g2 − g1, g3 − g4, . . . , gN − gN−1)′ . (3.12)

The following result is taken from [71], [52].

Proposition 3.5.1. (i) The matrix R is invertible, and R−1 ≥ 0, with strictly positive

diagonal elements (R−1)kk , k = 1, . . . , N − 1.
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(ii) The family of random variables Z(t), t ≥ 0, is tight in RN−1
+ , if and only if R−1µ < 0.

In this case, for every initial distribution of Y (0) we have: Z(t)⇒ π as t→∞, where π is

a unique stationary distribution of Z.

(iii) If, in addition, the skew-symmetry condition holds:

(q−k−1 + q+
k+1)σ2

k = q−k σ
2
k+1 + q+

k σ
2
k−1, k = 2, . . . , N − 1, (3.13)

then

π =
N−1⊗
k=1

E(λk), λk =
2

σ2
k + σ2

k+1

(
−R−1µ

)
k
, k = 1, . . . , N − 1.

Proof. Part (i) was proved in [71, subsection 2.1]; see also [103, Lemma 2.1], which in this

thesis corresponds to Lemma 2.2.1, with regard to the matrix R. Part (ii) of the statement

follows from properties of an SRBM mentioned in Chapter 2, in particular, from Proposi-

tions 2.4.1, 2.4.2, 2.4.5 and Corollary 2.4.7. The skew-symmetry condition for an SRBM is

written in the form

RD +DR′ = 2A,

where D = diag(A) is the (N − 1)× (N − 1)-diagonal matrix with the same diagonal entries

as A. As mentioned in [125, Theorem 3.5], this is a necessary and sufficient condition for

the stationary distribution to have product-of-exponentials form. This condition can be

rewritten for R and A from (3.6) and (3.8) as (5.5). Take i, j = 1, . . . , N − 1 and consider

the condition

rijajj + rjiaii = 2aij. (3.14)

If i = j, then (3.14) is always true, because for such i, j we have: rij = rji = 1, and aii =

aij = ajj = σ2
i + σ2

i+1. If |i− j| ≥ 2, then (3.14) is also always true, since rij = rji = aij = 0.

Since the left-hand side and the right-hand side of (3.14) remain the same if we swap i and

j, we need only to check this condition for j = k, i = k− 1, where k = 2, . . . , N − 1. We get:

rij = −q−k , rji = −q+
k , ajj = σ2

k + σ2
k+1, aii = σ2

k−1 + σ2
k, aij = −σ2

k.
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Therefore, the condition (3.14) takes the form

−q−k
(
σ2
k + σ2

k+1

)
− q+

k

(
σ2
k−1 + σ2

k

)
= −2σ2

k.

This is equivalent to (
2− q−k − q

+
k

)
σ2
k = q−k σ

2
k+1 + q+

k σ
2
k−1. (3.15)

Note that q−k + q+
k+1 = 1 and q+

k + q−k−1 = 1. Therefore, we can rewrite (3.15) as in (3.13)

For the case of symmetric collisions, we can refine Proposition 3.5.1. Let

gk := (g1 + . . .+ gk) /k for k = 1, . . . , N.

The following result is taken from [2], [3].

Proposition 3.5.2. For the case of symmetric collisions q±k = 1/2, k = 1, . . . , N ,

(i) The vector R−1µ can be represented as

−R−1µ = 2 (g1 − gN , g1 + g2 − 2gN , . . . , g1 + g2 + . . .+ gN−1 − (N − 1)gN)′

= 2
(
g1 − gN , 2 (g2 − gN) , . . . , (N − 1)

(
gN−1 − gN

))′
.

(ii) The tightness condition from Proposition 3.5.1 can be written as

gk > gN , k = 1, . . . , N − 1.

(iii) The skew-symmety condition can be equivalently written as

σ2
k+1 − σ2

k = σ2
k − σ2

k−1, k = 2, . . . , N − 1;

in other words, σ2
k must linearly depend on k.

(iv) If both the tightness condition and the skew-symmetry condition are true, then

π =
N−1⊗
k=1

E(λk), λk :=
4k

σ2
k + σ2

k+1

(gk − gN) .
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Proof. Let us show (i). It suffices to show that if

b = (g1 − gN , g1 + g2 − 2gN , . . . , g1 + g2 + . . .+ gN−1 − (N − 1)gN)′ ,

then

Rb = −1

2
µ =

1

2
(g1 − g2, g2 − g3, . . . , gN−1 − gN)′ .

The matrix R has the form (3.6) with q±n = 1/2, n = 1, . . . , N , so

R =



1 −1/2 0 0 . . . 0 0

−1/2 1 −1/2 0 . . . 0 0

0 −1/2 1 0 . . . 0 0
...

...
...

...
. . . . . . . . .

0 0 0 0 . . . 1 −1/2

0 0 0 0 . . . −1/2 1


(3.16)

Therefore,

(Rb)1 = b1 −
1

2
b2 = g1 − gN −

1

2
(g1 + g2 − 2gN) =

1

2
g1 −

1

2
g2.

Similarly, for k = 2, . . . , N − 2,

(Rb)k = −1

2
bk−1 + bk −

1

2
bk+1 = −1

2
(bk−1 − bk) +

1

2
(bk − bk+1)

= −1

2
(−gk + g) +

1

2
(−gk+1 + g) = −1

2
(gk+1 − gk) = (−1

2
µ)k.

In the same way, the same check can be done for k = N − 1. This proves (i). Part (iii)

is straightforward, because now q±k = 1/2 for all k; parts (ii) and (iv) follow from (i) and

(iii).

Example 1. If g1 = 1, g2 = g3 = . . . = gN = 0, and σ1 = σ2 = . . . = σN = 1 (finite Atlas

model with N particles), then

π =
N−1⊗
k=1

E
(

2
N − k
N

)
.

The following is a technical lemma.
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Lemma 3.5.3. Take a finite system of competing Brownian particles (either classical or

ranked). For every t > 0, the probability that there is a tie at time t is zero.

Proof. There is a tie for a system of competing Brownian particles at time t > 0 if and only

if the gap process at time t hits the boundary of the orthant RN−1
+ . But the gap process is

an SRBM. And an SRBM Z = (Z(t), t ≥ 0) in RN−1
+ has the property

P(Z(t) ∈ ∂RN−1
+ ) = 0 for every t > 0,

see [52, Section 7, Lemma 7].

3.6 Infinite Systems: Definitions and Known Facts

In this section, we define infinite classical systems of competing Brownian particles. Infinite

systems with asymmetric collisions are defined and constructed in Chapter 7; this is one of

the new results in this thesis. Here, we state only results which are already known. For more

details, we refer the reader to Chapter 7, which is a version of the author’s article [101].

Chapter 7 also contains detailed proofs of existence and uniqueness statements from [105]

and [59]. These proofs are not due to the author, but we felt that it might be a good idea

to include them in this thesis for the sake of completeness.

Assume the usual setting: (Ω,F , (Ft)t≥0,P), with the filtration satisfying the usual con-

ditions.

Fix parameters g1, g2, . . . ∈ R and σ1, σ2, . . . > 0. We say that a sequence (xn)n≥1 of real

numbers is rankable if there exists a one-to-one mapping (permutation) p : {1, 2, 3, . . .} →

{1, 2, 3, . . .} which ranks the components of x:

xp(i) ≤ xp(j) for i, j = 1, 2, . . . , i < j.

As in the case of finite systems, we resolve ties (when xi = xj for i 6= j) in the lexicographic

order: we take a permutation p which ranks the components of x, and, in addition, if i < j

and xp(i) = xp(j), then p(i) < p(j). There exists a unique such permutation p, which is called

the ranking permutation and is denoted by px. For example, if x = (2, 2, 1, 4, 5, 6, 7, . . .)′,
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then px(1) = 3, px(2) = 1, px(3) = 2, px(n) = n, n ≥ 4. Not all sequences of real numbers

are rankable: for example, x = (1, 1/2, 1/3, . . .)′ is not rankable.

Definition 20. Consider a R∞-valued process

X = (X(t), t ≥ 0), X(t) = (Xn(t))n≥1,

with continuous adapted components, such that for every t ≥ 0, the sequence X(t) =

(Xn(t))n≥1 is rankable. Let pt be the ranking permutation of X(t). Let W1,W2, . . . be i.i.d.

standard (Ft)t≥0-Brownian motions. Assume that the process X satisfies an SDE

dXi(t) =
∞∑
k=1

1(pt(k) = i) (gkdt+ σkdWi(t)) , i = 1, 2, . . .

Then the process X is called an infinite classical system of competing Brownian particles

with drift coefficients (gk)k≥1 and diffusion coefficients (σ2
k)k≥1. For each i = 1, 2, . . . the

component Xi = (Xi(t), t ≥ 0) is called the ith named particle. If we define Yk(t) ≡ Xpt(k)(t)

for t ≥ 0 and k = 1, 2, . . ., then the process Yk = (Yk(t), t ≥ 0) is called the kth ranked

particle. The R∞+ -valued process

Z = (Z(t), t ≥ 0), Z(t) = (Zk(t))k≥1,

defined by

Zk(t) = Yk+1(t)− Yk(t), k = 1, 2, . . . , t ≥ 0,

is called the gap process. If X(0) = x ∈ R∞, then we say that the system X starts from x.

In the papers [105] and [59], an existence and uniqueness result was proved. We do not

cite it here, instead referring the reader to Chapter 7, where we state it in a slightly different

and arguably more convenient form, as Theorem 7.2.1.

As mentioned in the Introduction (Chapter 1), the infinite Atlas model is a particular

case of a infinite classical system of competing Brownian particles, with

g1 = 1, g2 = g3 = . . . = 0, σ1 = σ2 = . . . = 1.

The following result was proved in [89]
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Proposition 3.6.1. There exists a version of the infinite Atlas model with

Z(t) ∼
∞⊗
k=1

E(2) for all t ≥ 0.

This is an example of a stationary distribution for an infinite system. Whether it is

unique or not is an open question. This is in stark contrast with finite system, where the

stationary distribution for the gap process, if it exists, is always unique. In Chapter 7, we

reprove this result in a simpler way, as a corollary of more general results for general infinite

systems (not just the infinite Atlas model).

For infinite systems, we define triple collisions in the same way as for finite systems. In

the paper [59], the following result about triple collisions was proved.

Proposition 3.6.2. Under assumptions of Theorem 7.2.1, if the sequence (0, σ2
1, σ

2
2, . . .) is

concave, then there are a.s. no triple collisions. If there are a.s. no triple collisions, then

the sequence (σ2
1, σ

2
2, . . .) is concave. A strong solution exists and is pathwise unique up to

the first moment of a triple collision.

In Chapter 7, we improve the result about triple collisions. It turns out that it is necessary

and sufficient for the sequence (σ2
1, σ

2
2, . . .) to be concave for absence of triple collisions.

3.7 Propagation of Chaos and McKean-Vlasov Equation

Consider a system of N randomly moving and interactng particles (not necessarily competing

Brownian particles). They are, of course, not necessarily independent. Now, let N →∞. If it

happens that the limiting processes are i.i.d., this phenomenon is called propagation of chaos.

When the number of particles was finite, they were dependent on each other, so there was

some “order” in the system. But when the number of particles started increasing to infinity,

then the “order” vanished, in the sense that each particle started moving independently

of all other particles. This term is also applicable if we are talking about real-valued or

finite-dimensional random variables, instead of random processes.
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A McKean-Vlasov equation is a type of SDE where the drift and diffusion coefficients

depend not only on the current position of the solution, but on the current distribution of

the solution. Namely, let X = (X(t), t ≥ 0) be a real-valued stochastic process, and let

Ft(x) := P(X(t) ≤ x) be the cumulative distribution function of X(t), for every t ≥ 0.

Take a standard Brownian motion W = (W (t), t ≥ 0), as well as functions g, σ : [0, 1]→ R.

Consider the following equation:

dX(t) = g(Ft(X(t)))dt+ σ(Ft(X(t)))dW (t). (3.17)

Under some additional technical assumptions, see [69] and [67], we can also write a PDE for

the cumulative distribution function Ft(x):

∂Ft(x)

∂t
=

1

2

∂2(Σ(Ft(x)))

∂x2
− ∂(G(Ft(x)))

∂x
, (3.18)

where G and Σ are antiderivatives of g and σ2:

G(x) :=

∫ x

0

g(y)dy, Σ(x) :=

∫ x

0

σ2(y)dy.

This PDE (3.18) is called a porous medium equation. This equation describes various physical

phenomena such as infiltration of water into a porous medium an evaporation of water from

soil, see [117] and the references therein. This is a quasilinear parabolic equation with respect

to the two-variable function Ft(x), which means that it is linear in the derivatives of the

function Ft(x), but not in this function itself. In this respect, this process X is different from

an ordinary diffusion process, when the PDE for its cumulative distribution function is linear

parabolic. This is why sometimes the process X is called a nonlinear diffusion process.

The so-called Vlasov equation models plasma consisting of charged particles with Coulomb

interaction. In [84] and [83], McKean observed that in a large ensemble of plasma particles,

each individual particle moves randomly with cumulative distribution function as in (3.18).

Note that the equation is the same for each individual particle; this is precisely the phe-

nomenon of propagation of chaos. This equation (3.18) was used to describe limiting behavior

for some other large systems of interacting particles in [19], [42], [41], [112] and [113].
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Now, recall the classical system of N competing Brownian particles from Definition 12:

dX
(N)
i (t) =

N∑
k=1

(pt(k) = i)
(
g

(N)
k dt+ σ

(N)
k dWi(t)

)
, i = 1, . . . , N. (3.19)

We explicitly stated dependence of N in the superscript. Here, pt is the ranking permutation

on {1, . . . , N}: if the particle Xi has rank k at time t, then pt(k) = i, and p−1
t (i) = k. Now,

consider an empirical measure:

µ
(N)
t =

1

N

N∑
k=1

δXi(t) =
1

N

N∑
k=1

δX(k)(t),

with cumulative distribution function

F
(N)
t (x) :=

1

N
#{i = 1, . . . , N | Xi(t) ≤ x} =

1

N
max{k = 1, . . . , N | X(k)(t) ≤ x}.

Therefore, if there is no tie at time t (which happens with probability 1)

F
(N)
t (Xi(t)) =

k

N
=
p−1
t (i)

N
.

Define the functions

g(N), σ(N) :

{
1

N
, . . . ,

N − 1

N
, 1

}
→ R

as follows:

g(N)

(
k

N

)
:= g

(N)
k , σ(N)

(
k

N

)
:= σ

(N)
k .

We can write the SDE (3.19) as

dX
(N)
i (t) = g(N)

(
F

(N)
t (Xi(t))

)
dt+ σ(N)

(
F

(N)
t (Xi(t))

)
dWi(t), i = 1, . . . , N. (3.20)

One can see that this bears clear resemblance to the SDE (3.17) for a nonlinear process. The

equation (3.19), or its equivalent formulation (3.20), can be viewed as a discrete version of the

McKean-Vlasov equation (3.17). So it is natural to anticipate that there is a special version

of the law of large numbers. If, in some sense, g(N) and σ(N) are discrete versions of the

functions g and σ, then the discrete system (3.20) converges to a continuous system (3.17).

This means that the empirical measure µ
(N)
t converges to the distribution of X(t) from (3.17).
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This was proved in a general version in [20] as a trivial corollary of a large deviations

result. (As always, large deviations principle serves as a refinement of a law of large numbers,

and the latter trivially follows from the former.) See also Section 3.9, devoted to literature

review.

3.8 Applications to Stochastic Portfolio Theory

Let us outline a brief and informal introduction to Stochastic Portfolio Theory, a newly

developed area of financial mathematics. The foundations of this theory were developed in

the articles [33], [28], [25], [26], and the mongraph [27]. This theory is descriptive, as opposed

to normative; it is consistent with the actual real-world stock market behavior and allows to

construct successful investment strategies.

Let us model a market with N stocks. Consider N strictly positive stochastic processes

Xk = (Xk(t), t ≥ 0), k = 1, . . . , N.

The quantity Xk(t) is the capitalization of kth stock at time t. The total market capitalization

is defined as

S(t) := X1(t) + . . .+XN(t).

The market weight of the kth stock is given by

µk(t) =
Xk(t)

S(t)
.

A portfolio is an RN -valued process

π = (π(t), t ≥ 0), π(t) = (π1(t), . . . , πN(t))′,

with |πi(t)| ≤ Kπ andπ1(t) + . . . + πN(t) = 1. The quantity πk(t) represents a share of the

total wealth invested in the kth stock. This framework allows short selling, when some πk(t)

are negative. If all πk(t) are nonnegative, this is called a long-only portfolio. The wealth

process V π = (V π(t), t ≥ 0) is a strictly positive process such that V π(0) = 1 and

dV π(t)

V π(t)
=

N∑
k=1

πk(t)
dXk(t)

Xk(t)
, t ≥ 0.
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One example of a portfolio is the market portfolio, where π = µ. This means that we

simply buy a share of the whole stock market. The corresponding wealth process is V µ(t) =

S(t)/S(0). We say that portfolio π represents an arbitrage opportunity relative to portfolio

ρ on the time horizon T if

V π(T ) > V ρ(T ) a.s., V π(T ) > V ρ(T ) with positive probability.

If the strict inequality holds a.s. we say that π provides a strong relative arbitrage. The

market is called diverse if there exists δ > 0 such that

µk(t) ≤ 1− δ for all k = 1, . . . , N and t ≥ 0.

Examples of such models were constructed in [32], [31] and [99]. We say that a model has

sufficient intrinsic volatility if there exists λ > 0 such that for all t ≥ 0 and ξ = (ξ1, . . . , ξN)′ ∈

RN ,
N∑
k=1

N∑
l=1

ξkξl
d〈logXk(t), logXl(t)〉t

dt
≥ λ‖ξ‖2.

The following fundamental theorem was proved in [27], [31], [32].

Proposition 3.8.1. For a diverse market model with sufficient intrinsic volatility, there

exists a portfolio which provides a strong relative arbitrage relative to the market over suffi-

ciently long-term horizon T .

One example is a diversity-weighted portfolio: take some p ∈ (0, 1), and let

πk(t) =
µpk(t)

µp1(t) + . . .+ µpN(t)
, t ≥ 0, k = 1, . . . , N.

See also a recent paper [118]. More examples can be constructed using functionally generated

portfolios, see [27, Chapter 3].

We say that a market model admits an equivalent martingale measure Q if Q is equivalent

to the original measure P on the filtration FT for each T > 0, and under this new measure,

each process Xi, i = 1, . . . , N , is a martingale.

It can be shown that if a model admits an equivalent martingale measure, then it does

not allow arbitrage (relative to any portfolio). Let us quote the book [27, Section 3.3]:
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It is difficult, if not impossible, to test the validity of the no-arbitrage hypoth-

esis empirically. In the literature, no-arbitrage frequently follows from the as-

sumed existence of an equivalent martingale measure, and the existence of such

a measure is not amenable to statistical verification. [...] [The above example]

shows that arbitrage is possible in a market that seems eminently well-behaved.

[...] From a normative point of view, weak diversity seems like an innocuous

enough assumption, and it would surely be imposed upon an actual equity mar-

ket by any credible antitrust regulation. Compare this mild assumption to the

all-encompassing existence of an equivalent martingale measure. The former im-

plies arbitrage, the latter no-arbitrage. [...] In light of this discussion, it would

seem that the no-arbitrage hypothesis must be relegated to the class of “empiri-

cally undecidable” statements, along with the older problem of determining the

number of angels that can dance on the head of a pin.

One class of market models is based on competing Brownian particles. Take a classical

system of N competing Brownian particles Y = (Y1, . . . , YN)′ with drift coefficients (gn)1≤n≤N

and diffusion coefficients (σ2
k)1≤k≤N . Now, let

Xk(t) := eYk(t), t ≥ 0, k = 1, . . . , N.

Then X = (X1, . . . , XN)′ is a market model. This model was introduced in [3]. It is not

diverse and it does not allow arbitrage, because it admits an equivalent martingale measure

(Girsanov removal of drifts).

One of the aims of this model is to capture the real-world phenomenon which was already

mentioned in the Introduction: stocks with smaller capitalizations have larger growth rates

and larger volatilities. In the context of this model, we must have

g1 > g2 > . . . > gN and σ2
1 > σ2

2 > . . . > σ2
N .

There is another usage of this model: to explain the Fernholz curve.
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Figure 3.1: Capital distribution curves: 1929-1999

Take real-world data of stocks. Calculate their market weights and rank them from top to

bottom according to their capitalizations (or, equivalently, their market weights): let µ(k)(t)

be the kth largest market weight at time t. Consider the log-log plot log k 7→ log µ(k)(t), at

different moments t. For this example, take t to be December 31 of eight different years:

1929, 1939, 1949, 1959, 1969, 1979, 1989, 1999. (More detailed information on which stocks

were included can be found in [27, Section 5.1].) The result is shown in Figure 3.8.

The plot shows remarkable stability over time and linearity in its upper part.

We can explain this with the use of the model described above, based on competing

Brownian particles. More precisely: Take large N and consider a system of competing

Brownian particles with drift coefficients g1, . . . , gN and diffusion coefficients σ2
1, . . . , σ

2
N .

Assume that the gap process is in its stationary distribution. The ranked market weights are

functions of the gap process. Indeed, if Y(j)(t) is the jth smallest particle at time t (note the

difference between ranking the market weights and ranking competing Brownian particles),
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then

µ(k)(t) =
exp

(
Y(N−k+1)(t)

)
N∑
j=1

exp
(
Y(j)(t)

) =
1

N∑
j=1

exp
(
Y(j)(t)− Y(N−k+1)(t)

) ,
and Y(j)(t)− Y(N−k+1)(t) is a sum of a few gaps. So the vector of ranked market weights

(
µ(1)(t), . . . , µ(N)(t)

)′
is also in its stationary distribution. We can take largeN and adjust parameters g1, . . . , gN , σ

2
1, . . . , σ

2
N ,

so that this log-log plot under the stationary distribution has the form shown in Figure 3.8.

This was done in [3]. In the paper [11], this stationary distribution is investigated when

N → ∞, under some assumptions on the coefficients. It turns out that in some cases (for

example, the Atlas model), as N →∞, the stationary distribution for ranked market weights

converges to the so-called Poisson-Dirichlet point process, which has the property that the

log-log plot is (approximately) linear.

3.9 Literature Review

Classical systems from Definition 12 were introduced in [3]. The formula (3.2), together

with the connection between the gap process and an SRBM in the orthant, were proved

in [2]. Proposition 3.5.2 was proved in [89], [2] and the thesis [57] by Tomoyuki Ichiba.

The paper [11] contains limit theorems for the stationary distribution of the gap process

as the number N of particles goes to infinity. Rate of convergence for the gap process to

this stationary distribution is found in [60], [65]; in the latter paper, the rate of convergence

in χ2-distance does not depend on N , the number of particles. Concentration of measure

results are proved in [90]. Poincare inequalities for the system in its stationary distribution

are proved in [65] and [60]. The paper [68] deals with a small noise limit, when diffusion

coefficients tends to zero.

Relation to stochastic finance is shown in the articles [66], [11], in the survey [31], and in

an earlier book [27]. See also a recent article [34], which uses the model to study economic

inequality and tax policy.
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Propagation of chaos (see Section 3.7) was studied in the paper [67]. The paper [65] also

contains some comparison results about classical systems of competing Brownian particles,

somewhat similar to the ones in Chapter 4. The paper [20] deals with large deviations for

classical systems of competing Brownian particles.

There are several generalizations of these systems: [105] (systems of competing Levy par-

ticles), [30], [29], [2] (second-order stock market models, when drift and diffusion coefficients

depend on both ranks and names).

As mentioned before, systems with asymmetric collisions from Definition 14 were intro-

duced in [71]; this paper also deals with triple collisions (obtaining a partial result on the

problem which is completely resolved in Chapter 5 of the current thesis), as well as recurrence

and stationary distributions of the gap process.

Infinite (classical) systems of competing Brownian particles were introduced in [89] (where

they proved that the distribution π∞ from (1.7), which is an infinite product of exponential

distributions with rates 2 is a stationary distribution for the gap process of the infinite

Atlas model, see Chapter 1). The papers [105] and [59] deal with existence and uniqueness

questions, as well as triple collisions. Sections 5 and 7 are continuation of research carried

out in these three papers. In a recent paper [21], it is proved that the scaling limit of the

lowest-ranked particle in the infinite Atlas model is the fractional Brownian motion with

Hurst parameter H = 1/4. This is similar to the Harris model from [45], which is a double-

sided infinite system of Brownian particles with zero drifts and unit diffusions (we consider

double-sided infinite systems in Chapter 8 of this thesis).

Other ordered particle systems derived from independent driftless Brownian motions were

studied by Arratia in [1], and by Sznitman in [112] and [113]. Several other papers study

connections between systems of queues and one-dimensional interacting particle systems:

[79], [109], [35], [36], [37], [104]. Links to the directed percolation and the directed polymer

models, as well as the GUE random matrix ensemble, can be found in [5] and [87]. (References

in this paragraph are quoted from [89].)

Systems of competing Brownian particles with asymmetric collisions are related to the
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theory of exclusion processes: it was proved in [71, Section 3] that these systems are scaling

limits of asymmetrically colliding random walks, which constitute a certain type of exclusion

processes. In addition, thse systems are also related to random matrices and random surfaces

evolving according to the KPZ equation, see [38].

Propagation of chaos results and convergence to McKean-Vlasov equations were a subject

of extensive research. This convergence was proved in [106] for the case when the system of

competing Brownian particles from (3.19) has the gap process in its stationary distribution,

and the function σ2 is affine; in this case, this stationary distribution has product of expo-

nentials form, see Proposition 3.5.2. It was proved in a stronger form (pathwise rather than

weak pointwise convergence) in [65] for the case when σ2 is constant, and G is convex. In

this article, they also studied propagation of chaos for projected particle system, that is, the

projection of (X1, . . . , XN)′ onto the hyperplane z1 + . . .+zN = 0. In [67], convergence of the

empirical cumulative distribution function to (3.18), and convergence of the empirical mea-

sure to the solution of (3.17) was shown under fairly weak conditions on g and σ2. In fact, in

this paper, systems of competing Brownian particles were used as discrete approximation to

show existence of the solution to (3.17). In the papers [65] and [67], a system of competing

Brownian particles need not have the gap process in its stationary distribution. In the paper

[64], they proved propagation of chaos for a particular case: g(u) := 0 and si2(u) := 2quq−1

for some q > 1. See also a related paper [63].

In the paper [98], propagation of chaos is established for stationary distributions instead

of the processes. Namely, it is shown that a stationary distribution for a projected system

of competing Brownian particles converges to the stationary distribution for the McKean-

Vlasov equation.
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Chapter 4

COMPARISON TECHNIQUES

This chapter, which corresponds to the author’s paper [100], is organized as follows. In

Section 4.1, we provide some intuitive simple examples. In Section 4.2, we state the main

results: Theorems 4.2.1 and 4.2.2. Section 4.3 is devoted to simple corollaries, which are

applied in later chapters. Section 4.4 contains proofs of Theorems 4.2.1 and 4.2.2. In Section

4.5, we study the case of totally asymmetric collisions, when parameters of collision are

allowed to be equal to 0 or 1. Section 4.6 is an Appendix, which contains some technical

lemmata.

4.1 Simple Examples

As a preview, let us mention a few (rather intuitive) results proved in this chapter. They

are applied in Chapter 7, which corresponds to the author’s paper [101]. See also the sketch

of the proof of Theorem 1.4.1 in the Introduction.

(i) If we remove a few competing Brownian particles YM+1, . . . , YN from the right, the

positions of the remaining particles Y1(t), . . . , YM(t) at any time t ≥ 0 shift to the right (in the

sense of stochastic comparison), because they no longer feel pressure from the right, exerted

by the removed particles. Moreover, the local times L(k,k+1)(t) stochastically decrease, and

the gaps Zk(t) stochastically increase, for k = 1, . . . , N − 1. (Corollary 4.3.8.)

(ii) If we shift (in the sense of stochastic comparison) initial positions Yk(0), k = 1, . . . , N ,

of all competing Brownian particles to the right, then their positions Yk(t), at any fixed time

t ≥ 0 also shift to the right, in the sense of stochastic comparison. (Corollary 4.3.10 (i).)

(iii) If we stochastically increase the initial gaps Zk(0), k = 1, . . . , N−1, between particles,

then at any time t ≥ 0 the values of the gaps Zk(t) also stochastically increase, and the local
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times Y(k,k+1)(t) stochastically decrease, for k = 1, . . . , N − 1.(Corollary 4.3.10 (ii).)

(iv) If we stochastically increase the values of parameters q+
1 , . . . , q

+
N , then the particles

Y1(t), . . . , YN(t) stochastically shift to the right. (Corollary 4.3.11.)

We get these (and similar) results as corollaries of the two main results stated in section

4.3: Theorems 4.2.1 and 4.2.2. These two theorems deal with general systems of com-

peting particles, which are generalizations of competing Brownian particles: they have ar-

bitrary continuous driving functions X1(t), . . . ,XN(t), in place of Brownian motions g1t +

σ1B1(t), . . . , gN t+ σNBN(t).

Although these results are intuitive and natural, their proofs turn out to be very compli-

cated and technical. Essentially, we approximate the RN -valued function

(g1t+ σ1B1(t), . . . , gN t+ σNBN(t))′

by piecewise linear functions with each piece parallel to a coordinate axis. For such piecewise

linear functions, we can solve for Y1, . . . ,YN explicitly and compare these solutions piece by

piece.

4.2 Main Results: Theorems 4.2.1 and 4.2.2

Let us now state the two main results of this chapter. The first result is devoted to the

Skorohod problem in the orthant. It states that the solution to the Skorohod problem and

the boundary terms are, in some sense, monotone with respect to the driving function and

the reflection matrix.

Theorem 4.2.1. Fix the dimension d ≥ 1 and let S = Rd
+. Consider two continuous

functions X,X : R+ → Rd such that X(0), X(0) ∈ S, and

X(0) ≤ X(0), X(t)−X(s) ≤ X(t)−X(s), t ≥ s ≥ 0. (4.1)

Take two d × d reflection nonsingular M-matrices R and R such that R ≤ R. Let Z and

Z be the solutions to the Skorohod problems in the orthant S with reflection matrices R, R,
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and driving functions X, X, respectively. Let L, L be the corresponding vectors of boundary

terms. Then

Z(t) ≤ Z(t), L(t)− L(s) ≥ L(t)− L(s), t ≥ s ≥ 0.

Let us explain this informally. Suppose we make the values X(t), t ≥ 0, and increments

X(t) − X(s), 0 ≤ s ≤ t, of the driving function X, as well as the off-diagonal elements

rij, i 6= j, of the reflection matrix R, smaller. (The diagonal elements rii, i = 1, . . . , d, by

definition, are always equal to 1.) Then the value Z(t) to the Skorohod problem Z decreases

(at any fixed time t ≥ 0), and the values of boundary terms Li(t), i = 1, . . . , d, increase.

This is what one would expect: if the driving function X decreases, this will cause the

“driven function” Z also to decrease, at least until Z is moving inside the orthant S. Indeed,

Z “wants to follow” X, by definition of the Skorohod problem. However, since the values

Z(t) of the function Z become smaller at any fixed time t ≥ 0, the process Z hits the

boundary more often.

And this leads to increase in the boundary terms, which grow when Z hits the boundary,

and which are “helping” Z to stay in the orthant S. (Recall that the driving function X

starts from the orthant but can leave it later.) The boundary terms Lj(t) ≥ 0 become larger,

while the off-diagonal elements rij ≤ 0, i 6= j, of the reflection matrix R become smaller. So

the terms rijLj(t) ≤ 0 become smaller for all i 6= j. The term riiLi(t) = Li(t) is the only

term in decomposition

Zi = Xi +
d∑
j=1

rijLj(t) (4.2)

that becomes larger, but it cannot make Zi larger than it already is, because it grows only

when Zi = 0, and Zi ≥ 0 always.

Remark 5. Note that the condition that the reflection matrix R has non-positive off-diagonal

elements (in other words, that it is a nonsingular reflection M-matrix) is crucial. Suppose

that r21 > 0. When Z hits the face S1, that is, when Z1(t) = 0, the boundary term L1 might

increase by some increment dL1(t). So the component Z2 might get additional increase
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r21dL1(t). Consider a concrete example: two driving functions X and X, with

X1(t) = −t, X1(t) = 1− t, Xi(t) = X i(t) = 1, i = 2, . . . , d.

These functions satisfy the conditions of Theorem 4.2.1. Let R = R be a reflection nonsin-

gular M-matrix. Let us solve the Skorohod problem in the orthant S for reflection matrix

R and driving functions X and X. The function X hits S1 already at time t = 0, but X

does this at time t = 1. So Z2 gets some of this increase mentioned above before Z2 does.

Actually, one can find the solutions explicitly: for t ∈ [0, 1],

Z2(t) = 1 + r21t, Z2(t) = 1.

Therefore, the statement of Theorem 4.2.1 is not true in this case.

The part of Theorem 4.2.1 concerning the functions Z and Z is already known: see [76],

[93], [78], [44]. However, we present a different method of proof, which allows us to compare

not just solutions to the Skorohod problem, but boundary terms as well. This comparison of

boundary terms plays crucial role in some of the proofs in Chapter 7 (based on the author’s

paper [101]). We could not find the results about boundary terms in the existing literature;

this served as a motivation for Theorem 4.2.1.

The other theorem deals with systems of competing particles. Consider a system of N

competing particles. If we increase the values and increments of driving functions, as well

as the coefficients q+
n , n = 2, . . . , N , then the output Y (t) (positions of competing particles)

will increase, too. Increasing coefficients q+
n , n = 2, . . . , N , has the following sense: for each

n, at every collision between the ranked particles Yn and Yn+1, the share of the push going

to Yn+1 (which pushes this particle to the right) increases, and the share of the push going

to Yn (which pushes this particle to the left) decreases.

Theorem 4.2.2. Fix N ≥ 2, the number of particles. Consider two continuous functions

X, X : R+ → RN , with X(0), X(0) ∈ WN , such that

X(0) ≤ X(0), X(t)−X(s) ≤ X(t)−X(s), 0 ≤ s ≤ t.
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Fix parameters of collision (q±n )1≤n≤N and (q±n )1≤n≤N , such that

q+
n ≤ q+

n , n = 2, . . . , N.

Consider systems Y and Y of competing particles with driving functions X and X, and

parameters of collision (q±n )1≤n≤N and (q±n )1≤n≤N . Then

Y (t) ≤ Y (t), t ≥ 0.

4.3 Corollaries

There are many corollaries of these two main results, which are straightforward but inter-

esting. They are used in Chapter 7 (corresponding to [101]). We shall state and prove them

in this subsection.

Corollary 4.3.1. Take a d× d-reflection nonsingular M-matrix R. Consider two copies of

an SRBMd(R, µ,A): Z and Z, starting from Z(0) and Z(0) such that Z(0) � Z(0). Let L

and L be the corresponding vectors of boundary terms. Then

Z(t) � Z(t), t ≥ 0;

L(t)− L(s) � L(t)− L(s), 0 ≤ s ≤ t.

Proof. We can switch from stochastic domination Z(0) � Z(0) to a.s. domination, by

changing the probability space. Assume that B = (B(t), t ≥ 0) is a d-dimensional Brownian

motion, starting at the origin, with drift vector µ and reflection matrix A. Then Z and Z are

solutions to the Skorohod problem in Rd
+ with driving functions Z(0) + B(t), Z(0) + B(t),

respectively, and reflection matrix R, and L, L are corresponding vectors of boundary terms.

The rest follows from Theorem 4.2.1.

Corollary 4.3.2. Fix N ≥ 2, the number of particles. Also, fix parameters of collision

(q±n )1≤n≤N . Take two continuous functions X,X : R+ → RN such that for

W = (X2 −X1, . . . , XN −XN−1)′, W = (X2 −X1, . . . , XN −XN−1)′, (4.3)
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we have:

W (0) ≤ W (0), W (t)−W (s) ≤ W (t)−W (s), 0 ≤ s ≤ t.

Let Y , Y be the systems of competing particles with parameters of collision (q±n )1≤n≤N and

driving functions X and X, respectively. Let Z, Z be the corresponding gap processes, and

let L, L be the corresponding vectors of collision terms. Then

Z(t) ≤ Z(t), t ≥ 0; L(t)− L(s) ≥ L(t)− L(s), 0 ≤ s ≤ t.

Proof. The functions Z and Z are solutions to the Skorohod problem in the orthant RN−1
+

with reflection matrix R from (3.6) and driving functions W and W , respectively. The

functions L and L are the corresponding vectors of boundary terms for these two Skorohod

problems. Apply Theorem 4.2.1 and finish the proof.

Corollary 4.3.3. Suppose X : R+ → Rd is a continuous function with X(0) ∈ S. Fix

a d × d-reflection nonsingular M-matrix R. Take a nonempty subset I ⊆ {1, . . . , d} with

|I| = p. Let Z be the solution to the Skorohod problem in S with reflection matrix R and

driving function X, and let L be the corresponding vector of boundary terms. Also, let Z be

the solution to the Skorohod problem in Rp
+ with reflection matrix [R]I and driving function

[X]I , and let L be the corresponding vector of boundary terms. Then

[Z(t)]I ≤ Z(t), t ≥ 0; [L(t)]I − [L(s)]I ≥ L(t)− L(s), 0 ≤ s ≤ t.

Remark 6. Corollary 4.3.3 has the following intuitive sense: suppose we remove a few com-

ponents of the driving function. Then these (no longer existing) components do not hit zero

and do not contribute (via boundary terms) to the decrease of the remaining components. If

the component j was removed but the component i stayed, then in the equation (4.2) Zi(t)

no longer has the term rijLj(t) ≤ 0. Thus, Zi(t) becomes larger.



58

Proof. Recall that Z(t) ≡ X(t) +RL(t). For i ∈ I, t ≥ 0,

Zi(t) = Xi(t) +
∑
j∈I

rijLj(t) +
∑
j /∈I

rijLj(t).

Therefore, [Z]I is the solution of the Skorohod problem in Rp
+ with reflection matrix [R]I

and driving function

X = (X i)i∈I , X i(t) = Xi(t) +
∑
j /∈I

rijLj(t), i ∈ I.

But rij ≤ 0 for i ∈ I, j ∈ Ic, because R is a Z-matrix. Moreover, each of the processes

Lj, j ∈ Ic, is nondecreasing. Therefore,

X i(t)−X i(s) ≤ Xi(t)−Xi(s), 0 ≤ s ≤ t, i ∈ I.

Apply Theorem 4.2.1 and finish the proof.

The following corollary is a consequence (and a Brownian counterpart) of Corollary 4.3.3.

Corollary 4.3.4. Take a d× d reflection nonsingular M-matrix R, a d× d positive definite

symmetric matrix A, and a drift vector µ ∈ Rd. Fix a nonempty subset I ⊆ {1, . . . , d}. Let

Z = SRBMd(R, µ,A), Z = SRBM|I|([R]I , [µ]I , [A]I)

such that [Z(0)]I has the same law as Z(0). Then [Z]I � Z.

Proposition 4.3.5. Take two d×d reflection nonsingularM-matrices R,R such that R ≤ R.

Fix a vector µ ∈ Rd and a positive definite symmetric d× d-matrix A. Let

Z = SRBMd(R, µ,A), Z = SRBMd(R, µ,A), such that Z(0) � Z(0).

Then Z � Z.

Corollary 4.3.6. Let 1 < N ≤ M . Fix a continuous function X : R+ → RM with X(0) ∈

WM . Fix parameters of collision (q±n )1≤n≤M . Let Y be the system of M competing particles

with parameters of collision (q±n )1≤n≤M and driving function X. Let Y be the system of N
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competing particles with parameters of collision (q±n )1≤n≤N and driving function [X]N . Let Z,

Z be the corresponding gap processes, and let L, L be the corresponding vectors of boundary

terms. Then

Zk(t) ≤ Zk(t), k = 1, . . . , N − 1, t ≥ 0; (4.4)

Lk(t)− Lk(s) ≥ Lk(t)− Lk(s), k = 1, . . . , N − 1, 0 ≤ s ≤ t; (4.5)

Yk(t) ≤ Y k(t), k = 1, . . . , N, t ≥ 0. (4.6)

Remark 7. Corollary 4.3.6 has the following meaning: if we take a system of competing parti-

cles and remove a few particles from the right, then there is “less pressure” on the remaining

left particles which would push them further to the left. Therefore, the gaps become wider;

there are less collisions, so the collision terms become smaller; and the remaining particles

themselves shift to the right.

Proof. For the system Y , we can write the first N particles as

Y1(t) = X1(t)− q−1 L(1,2)(t),

Y2(t) = X2(t) + q+
2 L(1,2)(t)− q−2 L(2,3)(t),

. . .

YN(t) = XN(t) + q+
NL(N−1,N)(t)− q−NL(N,N+1)(t).

So the vector-valued function (Y1, . . . , YN)′ = [Y ]N can itself be considered as a system of

competing particles, with driving function

X = (X1, X2, . . . , XN−1, XN − q−NL(N,N+1)(t))
′

and parameters of collision (q±n )1≤n≤N . Since L(N,N+1)(0) = 0, and L(N,N+1) is nondecreasing,

we have:

X(0) = X(0), X(t)−X(s) ≤ X(t)−X(s), 0 ≤ s ≤ t.
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Therefore, by Theorem 4.2.2, we get: [Y (t)]N ≤ Y (t), which proves (4.6). The functions W

and W , defined in (4.3), satisfy

W (0) = W (0), W (t)−W (s) ≤ W (t)−W (s), 0 ≤ s ≤ t.

Apply Corollary 4.3.2 to prove (4.4) and (4.5). This completes the proof.

If we remove particles from both the left and the right, then there are less collisions,

so the remaining collision terms decrease and the remaining gaps increase. But we cannot

say anything about the remaining particles themselves (whether they shift to the left or to

the right). Removal of a few particles from the right eliminates some push from the right;

similarly, removal of a few particles from the left eliminates some push from the left. But

we cannot say which of these two effects outweighs the other one.

Corollary 4.3.7. Fix 1 ≤ N1 < N2 ≤ M . Fix a continuous function X : R+ → RM

with X(0) ∈ WM . Let Y be the system of N competing particles with parameters of colli-

sion (q±n )1≤n≤M and driving function X. Let Y = (Y N1 , . . . , Y N2)
′ be the system of N2 −

N1 + 1 competing particles with parameters of collision (q±n )N1≤n≤N2 and driving function

(XN1 , . . . , XN2)
′. Let Z = (Z1, . . . , ZM−1)′ and Z = (ZN1 , . . . , ZN2−1)′ be the corresponding

gap processes, and let

L = (L(1,2), . . . , L(M−1,M))
′, L = (L(N1,N1+1), . . . , L(N2−1,N2))

′,

be the vectors of collision terms. Then

Zk(t) ≤ Zk(t), k = N1, . . . , N2 − 1, t ≥ 0;

L(k,k+1)(t)− L(k,k+1)(s) ≥ L(k,k+1) − L(k,k+1)(s), k = N1, . . . , N2 − 1, 0 ≤ s ≤ t.

The rest of the corollaries deal with competing Brownian particles. The first of these

corollaries is a Brownian counterpart of Corollary 4.3.6. It says that if you remove a few

competing Brownian particles from the right, then the remaining particles shift to the right,

the local times of collisions decrease, and the gaps increase. This corollary was mentioned

in the Introduction, subsection 1.2.
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Corollary 4.3.8. Fix 1 < N ≤ M . Take a system Y of M competing Brownian particles

with parameters (gk)1≤k≤M , (σ2
k)1≤k≤M , (q±k )1≤k≤M , starting from y ∈ WM . Let B1, . . . , BM

be the corresponding driving Brownian motions. Take another system Y of N competing

Brownian particles with parameters (gk)1≤k≤N , (σ2
k)1≤k≤N , (q±k )1≤k≤N , starting from [y]N ,

with driving Brownian motions B1, . . . , BN . Let Z, Z be the corresponding gap processes,

and let L, L be the corresponding vectors of collision local times. Then

Yk(t) ≤ Y k(t), k = 1, . . . , N, t ≥ 0; (4.7)

Zk(t) ≤ Zk(t), k = 1, . . . , N − 1, t ≥ 0; (4.8)

L(k,k+1)(t)− L(k,k+1)(s) ≥ L(k,k+1)(t)− L(k,k+1)(s), k = 1, . . . , N − 1, 0 ≤ s ≤ t. (4.9)

The next corollary is a Brownian counterpart of Corollary 4.3.7. It says that if you

remove a few competing Brownian particles from the right and from the left simultaneously,

then the local times of collisions decrease, and the gaps increase.

Corollary 4.3.9. Fix 1 ≤ N1 < N2 ≤ M . Take a system Y of M competing Brown-

ian particles with parameters (gk)1≤k≤M , (σ2
k)1≤k≤M , (q±k )1≤k≤M , starting from y ∈ WM .

Let B1, . . . , BM be the corresponding driving Brownian motions. Take another system Y =

(Y N1 , . . . , Y N2)
′ of N2 −N1 + 1 competing Brownian particles with parameters (gk)N1≤k≤N2,

(σ2
k)N1≤k≤N2, (q±k )N1≤k≤N2, starting from (yN1 , . . . , yN2)

′, with driving Brownian motions

BN1 , . . . , BN2. Let Z = (Z1, . . . , ZM−1)′, Z = (ZN1 , . . . , ZN2)
′ be the corresponding gap

processes, and let L = (L(1,2), . . . , L(M−1,M))
′, L = (L(N1,N1+1), . . . , L(N2−1,N2))

′ be the corre-

sponding vectors of collision terms. Then

Zk(t) ≤ Zk(t), k = N1, . . . , N2 − 1, t ≥ 0;

L(k,k+1)(t)− L(k,k+1)(s) ≥ L(k,k+1)(t)− L(k,k+1)(s), k = N1, . . . , N2 − 1, 0 ≤ s ≤ t.
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Remark 8. We can also remove a few particles from the left instead of the right. We can

formulate the statement analogous to Corollary 4.3.6. This fits into the framework of Corol-

lary 4.3.7 when N2 = M . The inequalities (4.4) and (4.5) remain true, and the inequal-

ity (4.6) changes sign. Similarly, Corollary 4.3.8 can be modified when we remove particles

from the left instead of the right. This fits into the framework of Corollary 4.3.9 when

N2 = M .Then the inequality (4.7) changes sign, and the inequalities (4.8) and (4.9) stay

true.

Remark 9. Corollaries 4.3.6, 4.3.7, 4.3.8 and 4.3.9 can be generalized for the case of infinite

particle systems, when M = ∞. Recall that we introduced infinite systems of competing

particles (and including competing Brownian particles) in Definition 18. Again, here we

do not prove existence of these infinite systems; we state these corollaries, assuming these

systems exist. The proofs are the same as for finite M , with only trivial adjustments.

The following corollary was also mentioned in the Introduction, subsection 1.2.

Corollary 4.3.10. Take two systems, Y and Y , of N competing Brownian particles with

parameters (gk)1≤k≤N , (σ2
k)1≤k≤N , (q±k )1≤k≤N . Suppose these two systems have the same

driving Brownian motions. Let Z, Z be the corresponding gap processes, and let L, L be the

corresponding vectors of collision terms.

(i) If Y (0) ≤ Y (0), then Y (t) ≤ Y (t), t ≥ 0.

(ii) If Z(0) ≤ Z(0), then Z(t) ≤ Z(t), t ≥ 0, and L(t)−L(s) ≥ L(t)−L(s), 0 ≤ s ≤ t.

The last two corollaries show how to compare systems of competing Brownian particles in

case of the change in drift coefficients or parameters of collision. The first of these corollaries

tells that if you increase q+
1 , . . . , q

+
N , the whole system will shift to the right.

Corollary 4.3.11. Consider two systems Y and Y of N competing Brownian particles with

common drift and diffusion coefficients (gk)1≤k≤N , (σ2
k)1≤k≤N , but different parameters of

collision (q±k )1≤k≤N , (q±k )1≤k≤N , such that q+
n ≥ q+

n , n = 1, . . . , N . Suppose Y (0) = Y (0) and

the driving Brownian motions are the same for these two systems. Then

Y (t) ≤ Y (t), t ≥ 0.
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Proof. Let B1, . . . , BN be the driving Brownian motions for these systems. Then Y and Y

are systems of competing particles with parameters of collision (q±n )1≤n≤N , (q±n )1≤n≤N , and

the same driving function

X(t) = (Y1(0) + g1t+ σ1B1(t), . . . , YN(0) + gN t+ σNBN(t))′ .

Apply Theorem 4.2.2 and finish the proof.

The following corollary shows how to use the drift coefficients for comparison.

Corollary 4.3.12. Consider two systems Y and Y of N competing Brownian particles with

common diffusion coefficients (σ2
k)1≤k≤N and parameters of collision (q±n )1≤n leN , but with

different drift coefficients (gn)1≤n≤N , (gn)1≤n≤N . Suppose Y (0) = Y (0) and the driving

Brownian motions are the same for these two systems. Let Z and Z be the corresponding

gap processes, and let L and L be the corresponding vectors of collision terms.

(i) If gk ≤ gk, k = 1, . . . , N , then Y (t) ≤ Y (t), t ≥ 0.

(ii) If gk+1 − gk ≤ gk+1 − gk, k = 1, . . . , N − 1, then

Z(t) ≤ Z(t), t ≥ 0; L(t)− L(s) ≥ L(t)− L(s), 0 ≤ s ≤ t.

Proof. Let B1, . . . , BN be the driving Brownian motions for these systems. Then Y and

Y are systems of competing particles with parameters of collision (q±n )1≤n≤N and driving

functions

X(t) = (Y1(0) + g1t+ σ1B1(t), . . . , YN(0) + gN t+ σNBN(t))′ ,

X(t) = (Y1(0) + g1t+ σ1B1(t), . . . , YN(0) + gN t+ σNBN(t))′ .

(i) We have: X(t) − X(s) ≤ X(t) − X(s), 0 ≤ s ≤ t, and X(0) = X(0). Apply

Theorem 4.2.2 and finish the proof.

(ii) This statement immediately follows from Corollary 4.3.2.
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In each of the last few corollaries, if we remove the requirement that the driving Brownian

motions must be the same, then we get stochastic comparison instead of pathwise comparison.

4.4 Proofs of Theorems 4.2.1 and 4.2.2

4.4.1 Outline of the proofs

We prove Theorems 4.2.1 and 4.2.2 by approximating the general continuous driving func-

tions by “simple” functions, which are defined as follows.

Definition 21. A continuous function f : [0, T ] → Rd is called regular if it is piecewise

linear with each piece parallel to one of the coordinate axes; that is, if there exist a partition

0 = t0 < t1 < . . . < tN = T and numbers α1, . . . , αN ∈ R, j1, . . . , jN ∈ {1, . . . , d} such that

for k = 1, . . . , N , we have:

f(t) = f(tk) + αkejk(t− tk−1), tk−1 ≤ t ≤ tk.

Two regular functions f and f are called coupled if the partition t0, . . . , tN and the indices

j1, . . . , jN are the same for them.

We make three observations:

(i) Any continuous function X : [0, T ] → Rd can be uniformly approximated by regular

functions. This is proved in Lemma 4.4.1. Moreover, we show that a pair of continuous

functions X and X which satisfy (4.1) can be uniformly on [0, T ] approximated by a pair of

coupled regular functions so that within each pair two regular functions also satisfy (4.1).

This is proved in Lemma 4.4.2.

(ii) All the objects we are considering in this chapter (the solution to the Skorohod

problem in the orthant, boundary terms in the Skorohod problem, the system of competing

particles, the gap process, the vector of collision terms) continuously depend on the corre-

sponding driving functions; see Lemma 4.4.3 and Lemma 4.4.4. In fact, that this is true

for the Skorohod problem (both for the solution and for the boundary terms) was already
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shown in [125], [51]; we just restate it here. So we can prove Theorems 4.2.1 and 4.2.2 just

for regular driving functions.

(iii) In Lemmas 4.4.6 and 4.4.7, we show that solutions to the Skorohod problem and

systems of competing particles are “memoryless”: if you take a moment t > 0, then their

behavior after this moment depends only on their current position and future dynamics of

the driving function. This is very similar to Markov property (although the concepts of the

Skorohod problem and competing particles are deterministic, not random). This allows us

to consider driving regular functions (and the solutions) piece by piece.

The goal of these three observations is Lemma 4.4.8. It shows that Theorems 4.2.1

and 4.2.2 can be reduced to the case when the driving functions are not just piecewise linear,

but exactly linear, with the directional vector parallel to one of the axes. And since they are

coupled, this axis is the same for both functions. That is, we can consider

X(t) = x+ αeit, X(t) = x+ αeit, (4.10)

where α, α ∈ R, i = 1, . . . , d. The condition (4.1) for these functions is equivalent to

x ≤ x, α ≤ α. (4.11)

But for regular linear driving functions as in (4.10), we can actually solve the Skorohod

problem explicitly, and find the solution Z and and the vector of boundary terms L in exact

form. This is done in Lemma 4.4.9. We can do the same for the system Y of competing

particles: Lemma 4.4.11. Then we can manually compare the solutions Z and Z of the

Skorohod problem, and the vectors L and L of boundary terms, or (if we are considering

systems of competing particles) Y and Y . This completes the proof of Theorems 4.2.1

and 4.2.2.

The rest of this section is organized as follows.

In subsection 4.2, we state and prove the technical results mentioned above: (i) approxi-

mation of continuous driving functions by regular functions; (ii) continuous dependence on

driving functions; (iii) the memoryless property. In subsection 4.3, we explicitly solve the
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Skorohod problem for regular driving functions in Lemma 4.4.9 and find the solution together

with the boundary terms. In subsection 4.4, we do the same for a system of competing par-

ticles in Lemma 4.4.11. In subsections 4.5 and 4.6, we prove Theorems 4.2.1 and 4.2.2 for

regular linear driving functions. This completes the proof.

4.4.2 Auxillary results

Observation (i): approximation by regular driving functions.

Lemma 4.4.1. Fix T ≥ 0 and take a continuous function X : [0, T ] → Rd. Then there

exists a sequence (X(n))n≥1 of regular functions [0, T ]→ Rd which uniformly converges to X

on [0, T ].

Proof. Let

ti :=
Ti

d
, i = 0, . . . , d.

Split the interval [0, T ] into d equal subintervals: Ii := [ti−1, ti], i = 1, . . . , d. On the ith

subinterval Ii, define the function X(1) as follows:

X(1)(t) = X(1) (ti−1) + (Xi (ti)−Xi (ti−1))
t− ti−1

ti − ti−1

ei, i = 1, . . . , d, a ≤ t ≤ b.

Then X(1)(0) = X(0) and X(1)(T ) = X(T ). During the time interval Ii, only the ith compo-

nent of the function X(1) is changing; other components stay constant. The ith component

X
(1)
i is moving between X1(0) and X1(T ). So∣∣∣X(1)

i (t)−Xi(0)
∣∣∣ ≤ |Xi(T )−Xi(0)| , t ∈ [0, T ].

Therefore,

‖X(1)(t)−X(0)‖ ≤ ‖X(T )−X(0)‖, t ∈ [0, T ],

and

‖X(1)(t)−X(t)‖ ≤ ‖X(T )−X(0)‖+ max
0≤t≤T

‖X(t)−X(0)‖ ≤ 2 max
0≤t≤T

‖X(t)−X(0)‖.
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Let sk := kT/n, k = 0, . . . , n. Split [0, T ] into n equal subintervals Jk = [sk−1, sk], k =

1, . . . , n, and perform the same construction of X(1) for each of these small subintervals in

place of [0, T ]. Then we get a continuous function X(n) such that

X(n)(sk) = X(sk), k = 0, . . . , n.

For t ∈ Jk, we have:

‖X(1)(t)−X(t)‖ ≤ 2 max
sk−1≤t≤sk

‖X(t)−X (sk−1)‖.

Therefore,

max
0≤t≤T

‖X(n)(t)−X(t)‖ ≤ 2 max
k=1,...,n

max
sk−1≤t≤sk

‖X(kT/n)−X((k − 1)T/n)‖. (4.12)

But the function X is uniformly continuous on [0, T ]. Therefore, the right-hand side of (4.12)

tends to zero as n → ∞. Thus, the sequence of regular functions (X(n))n≥1 uniformly

converges to X.

We will call the sequence constructed in Lemma 4.4.1 the standard approximating se-

quence.

Lemma 4.4.2. Fix T ≥ 0 and take two continuous functions X,X : [0, T ]→ Rd such that

X(0) ≤ X(0); X(t)−X(s) ≤ X(t)−X(s), 0 ≤ s ≤ t ≤ T.

Then there exist two sequences (X(n))n≥1, (X
(n)

)n≥1 of regular functions [0, T ] → Rd such

that:

(i) X(n) → X, X
(n) → X uniformly on [0, T ] as n→∞;

(ii) for every n ≥ 1, the functions X(n) and X
(n)

are coupled;

(iii) X(n)(0) ≤ X
(n)

(0) and X(n)(t)−X(n)(s) ≤ X
(n)

(t)−X(n)
(s) for all 0 ≤ s ≤ t ≤ T .

Proof. Construct two standard approximating sequences as in the proof of Lemma 4.4.1. Let

us show that

X(1)(t)−X(1)(s) ≤ X
(1)

(t)−X(1)
(s), 0 ≤ s ≤ t.
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Indeed, X(1) and X
(1)

are linear on each [(k − 1)T/N, kT/N ], and

X(1)

(
kT

N

)
−X(1)

(
(k − 1)T

N

)
≤ X

(1)
(
kT

N

)
−X(1)

(
(k − 1)T

N

)
.

The proof is similar for X(n) and X
(n)

instead of X(1) and X
(1)

.

Observation (ii): continuous dependence. The first result, about the Skorohod problem

in the orthant, is already known from [51], [127]; see also [125].

Lemma 4.4.3. Fix d ≥ 1, the dimension, and let S = Rd
+. Take a d×d reflection nonsingular

M-matrix R. Consider a continuous function X : R+ → Rd with X(0) ∈ S, and let Z be the

solution of the Skorohod problem in S with reflection matrix R and driving function X. Let

L be the vector of boundary terms. The mapping X 7→ (Z,L) is continuous in the topology

of uniform convergence on [0, T ], for every T > 0.

A counterpart of the previous theorem is the continuity result about systems of competing

particles.

Lemma 4.4.4. Fix N ≥ 2. Consider the parameters of collision (q±k )1≤k≤N . Consider

a continuous function X : R+ → RN with X(0) ∈ WN , and let Y be the system of N

competing particles with driving function X and the given parameters of collision. Let L be

the vector of collision terms. Then the mapping X 7→ (Y, L) is continuous in the topology of

uniform convergence on [0, T ], for every T > 0.

Proof. Return to the proof of Lemma 3.4.3. The mapping

(X1, . . . , XN)′ 7→ (X2 −X1, . . . , XN −XN−1)′

is continuous in this topology. The mapping

(X2 −X1, . . . , XN −XN−1)′ 7→ (Z1, . . . , ZN−1)′

is continuous, by Lemma 4.4.4 just above. The mappings (X1, . . . , XN)′ 7→ α1X1(t) + . . . +

αNXN(t) and Y(t) 7→ C−1Y(t) are continuous. The composition of all these continuous
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mappings is the mapping X 7→ Y , which is also continuous. Similarly, X 7→ L is continuous.

These continuity results, together with the approximation results (Lemma 4.4.1 and

Corollary 4.4.2), allow us to substantially narrow the class of driving functions. Let us state

this as a separate lemma.

Lemma 4.4.5. If Theorems 4.2.1 and 4.2.2 are true for coupled regular driving functions,

then they are true in the general case.

Observation (iii): memoryless property. This allows us to further narrow the scope of

driving functions: to take coupled regular linear driving functions.

Lemma 4.4.6. Fix d ≥ 1. Take a continuous function X : R+ → Rd with X(0) ∈ S = Rd
+

and a d× d-reflection nonsingular matrix R. Let Z be the solution of the Skorohod problem

in S with reflection matrix R and driving function X. Let L be the vector of boundary terms.

Fix T ≥ 0. For t ≥ 0, let

XT (t) = X(T + t)−X(T ) + Z(T ),

LT (t) = L(T + t)− L(T ), ZT (t) = Z(T + t).

Then ZT is the solution of the Skorohod problem with reflection matrix R and driving function

XT , and LT is the corresponding vector of boundary terms.

Proof. It suffices to check the definition: we need to prove that

ZT (t) = XT (t) +RLT (t), t ≥ 0.

This follows from

Z(t+ T ) = X(t+ T ) +RL(t+ T ) and Z(T ) = X(T ) +RL(T ).
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Let us state a similar property for systems of competing particles. The proof is similar

to the previous one and is omitted.

Lemma 4.4.7. Fix N ≥ 2. Assume Y is a system of N competing particles with driving

function X : R+ → RN and parameters of collision (q±n )1≤n≤N . Let L be the corresponding

vector of collision terms. Fix T ≥ 0. For t ≥ 0, let

XT (t) = X(T + t)−X(T ) + Y (T ),

LT (t) = L(T + t)− L(T ), YT (t) = Y (T + t).

Then the function YT is a system of N competing particles with driving function XT and the

parameters of collision, and LT is the corresponding vector of collision terms.

Remark 10. The memoryless property also holds true for infinite systems of competing par-

ticles from Definition 18. The proof is the same, with obvious adjustments.

The memoryless property allows us to narrow the class of driving functions to regular

linear functions, that is, functions of the type (4.10).

Lemma 4.4.8. If Theorems 4.2.1 and 4.2.2 are true for coupled regular linear driving func-

tions as in (4.10), satisfying (4.11), they are true in the general case.

Proof. By Lemma 4.4.5, it suffices to show these theorems for coupled regular driving func-

tions. For example, let us prove Theorem 4.2.1 for coupled regular driving functions X and

X; Theorem 4.2.2 is proved similarly. Let 0 = t0 < t1 < . . . < tN = T and j1, . . . , jN be the

common parameters for these functions, as in Definition 21. The restrictions

X|[t0,t1] , X
∣∣
[t0,t1]

are coupled regular linear functions. Assuming we proved Theorem 4.2.1 for such driving

functions, we have:

Z(t) ≤ Z(t), t ≥ 0; L(t)− L(s) ≥ L(t)− L(s), 0 ≤ s ≤ t ≤ t1.
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In particular, we have: Z(t1) ≤ Z(t1). But t 7→ Z(t + t1) is the solution of the Skorohod

problem with reflection matrix R and driving function t 7→ X(t + t1) − X(t1) + Z(t1); a

similar statement is true for t 7→ Z(t+ t1). And

L(t+ t1)− L(t1), L(t+ t1)− L(t1), 0 ≤ t ≤ t2 − t1.

are the corresponding vectors boundary terms for these Skorohod problems. The functions

X(t+ t1)−X(t1) + Z(t1) and X(t+ t1)−X(t1) + Z(t1) (4.13)

are coupled regular linear driving functions on [0, t2 − t1]. They also satisfy conditions of

Theorem 4.2.1. Indeed,

X(t+ t1)−X(t1) + Z(t1)|t=0 = Z(t1) ∈ S, X(t+ t1)−X(t1) + Z(t1)
∣∣
t=0

= Z(t1) ∈ S,

and for 0 ≤ s ≤ t ≤ t2 − t1 we have:

(X(t+ t1)−X(t1) + Z(t1))− (X(s+ t1)−X(t1) + Z(t1)) = X(t+ t1)−X(s+ t1)

≤ X(t+ t1)−X(s+ t1) = (X(t+ t1)−X(t1) + Z(t1))− (X(s+ t1)−X(t1) + Z(t1)).

Therefore, applying Theorem 4.2.1 for coupled regular linear driving functions (4.13), we

get:

Z(t+ t1) ≤ Z(t+ t1), 0 ≤ t ≤ t2 − t1,

L(t+ t1)− L(s+ t1) ≥ L(t+ t1)− L(s+ t1), 0 ≤ s ≤ t ≤ t2 − t1.

Similarly, moving to the next interval [t2, t3], etc., we can show that for every k = 1, . . . , N ,

Z(t) ≤ Z(t), t ∈ [tk−1, tk], (4.14)

L(t+ tk−1)− L(s+ tk−1) ≥ L(t+ tk−1)− L(s+ tk−1), 0 ≤ s ≤ t ≤ tk − tk−1. (4.15)

We can equivalently write (4.14) as

Z(t) ≤ Z(t), t ∈ [0, T ],
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and (4.15) as

L(t)− L(s) ≥ L(t)− L(s), tk−1 ≤ s ≤ t ≤ tk, k = 1, . . . , N. (4.16)

Now, let us show that

L(t)− L(s) ≥ L(t)− L(s), 0 ≤ s ≤ t ≤ T.

This is done just by summing the inequalities (4.16): find k, l = 1, . . . , N such that

tk−1 ≤ s ≤ tk ≤ . . . ≤ tl ≤ t ≤ tl+1.

Then we have: 

L(t)− L(tl) ≥ L(t)− L(tl)

L(tl)− L(tl−1) ≥ L(tl)− L(tl−1)

. . .

L(s)− L(tk−1) ≥ L(s)− L(tk−1)

Sum these inequalities and finish the proof.

4.4.3 Exact solutions of the Skorohod problem for regular linear driving functions

Fix the dimension d ≥ 1, and recall that S = Rd
+ is the positive d-dimensional orthant. Let

X(t) = x+ αeit, 0 ≤ t ≤ T, (4.17)

be a regular linear driving function. Here, x ∈ S, α ∈ R and i = 1, . . . , d. Take a reflection

nonsingularM-matrix R. In this subsection, we find the explicit solution Z (and the vector

L of boundary terms) for the Skorohod problem in the orthant S with reflection matrix R

and driving function X.

Let us first describe the behavior of this solution informally. The solution Z “wants” to

move along with the driving function X. However, if X gets out of the orthant S, then Z

“is not allowed” out of the orthant; the boundary terms push it back to S.
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Case 1. α ≥ 0. Then X does not get out of S. This is a trivial case: the boundary

terms Li stay zero: L(t) ≡ 0, and the solution Z exactly follows the driving function X:

Z(t) ≡ X(t).

Case 2. α < 0 and xi = 0. Then the driving function X is moving along the axis xi

in the negative direction, starting from the face Si of the boundary ∂S. The solution Z of

the Skorohod problem “wants” to move in tandem with X, which means that it “wants” to

cross this face Si. However, it cannot do this, since it must be in the orthant. Therefore,

it stays at this face. The boundary term Li increases: this term “counters the influence”

of the driving function X, which “wants” to take Z out of the orthant. This increase in Li

also influences other components Zj, j 6= i, of Zi, through reflection matrix R (or, more

precisely, through the elements rij ≤ 0, j 6= i). Therefore, if Z moves on the face Si, this

contributes to decrease of other components Zj, j 6= i. Let

I(t) = {j = 1, . . . , d | Zj(t) = 0}. (4.18)

Suppose j ∈ I(0). Then Zj was originally zero, and it “wants” to decrease because of the

increase in Li. But Zj cannot decrease further, because Z(t) must stay in the orthant.

Therefore, the boundary term Lj starts to increase, to “counter” the influence of Li. This

can be said of all j ∈ I(0). If, however, j /∈ I(0), then Zj(0) > 0, and so Zj “is allowed” to

decrease, so the boundary term Lj stays zero.

Let us summarize this: for j ∈ I(t), the boundary term Lj increases, and Zj(t) = 0; for

j /∈ I(t), the boundary term Lj(t) = 0, and Zj decreases. This description is accurate until

some new component Zj hits zero; another way to say this is when the set-valued function

I jumps upward. Denote this moment by τ1. Then, using the memoryless property from

Lemma 4.4.6, we repeat the same, starting from τ1. Let τ2 be the next jump moment of the

function I, etc. Between any of these two moments, the function I is constant. There will

be no more than d pf these moments, because the function I increases at every jump, and

i ∈ I(0), but I(t) ⊆ {1, . . . , d}.

Case 3. xi > 0 and α < 0. Then X moves to the boundary and hits it at some moment



74

τ1 = x1/|α|. The solution Z “wants” to move in tandem with Z. Until τ1, however, the

solution Z does not need to be pushed inside the orthant S by boundary terms, so this is

also a trivial case: L(t) ≡ 0, Z(t) ≡ X(t). If τ1 ≥ T , then the time-horizon is earlier than

hitting moment of the boundary, and this completes the description of Z and L. If τ1 < T ,

then we use the memoryless property and start from τ1; we are back in Case 2.

Now, let us formulate the result rigorously.

Lemma 4.4.9. Let R be a d×d reflection nonsingularM-matrix. Let X be given by (4.17).

Let Z be the solution to the Skorohod problem in the orthant S with reflection matrix R and

driving function X. Let L be the corresponding vector of boundary terms. Then Z and L are

given by the following formulas.

(i) If α ≥ 0, then Z(t) ≡ X(t) and L(t) ≡ 0;

(ii) If α < 0, and xi = 0, then:

(a) Z is nondecreasing, L is nondecreasing, the set-valued function I defined in (4.18) is

nondecreasing;

(b) there exists a sequence 0 = τ0 < τ1 < . . . < τK = T of moments such that on each

[τl−1, τl), I(t) is constant, and

τl := inf{t > τl−1 | I(t) 6= I (τl−1)} ∧ T. (4.19)

We use the convention inf ∅ = +∞. At each moment τl, l = 1, . . . , K − 1, the function I

jumps and increases.

(c) For t ∈ [τl−1, τl], letting J := I(τl−1), we have:

[Z(t)]J = 0; [Z(t)]Jc = [Z(τl−1)]Jc + |α|[R]JcJ [R]−1
J [ei]J(t− τl−1), (4.20)

[L(t)]J = [L(τl−1)]J + |α|[R]−1
J (t− τl−1); [L(t)]Jc = [L(τl−1)]Jc . (4.21)

(iii) If α < 0, and xi > 0, then Z is nondecreasing, L is nondecreasing, the set-valued

function I from (4.18) is nondecreasing, and there exists a sequence 0 = τ0 < τ1 < . . . <
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τK = T of moments such that on each [τl−1, τl), I(t) ≡ I(τl−1) =: J is constant, on [0, τ1] we

have:

Z(t) ≡ X(t), L(t) ≡ 0,

and on [τl−1, τl], l = 2, . . . , k, the functions Z and L are given by the formulas (4.20)

and (4.21). The equation (4.19) is still true. As in case (ii), at each moment τl, l =

1, . . . , K − 1, the function I jumps and increases.

Proof. The case (i) is straightforward. Let us show (ii). Using the memoryless property and

induction by l, we can assume w.l.o.g. that τl = 0, that is, l = 0: it suffices to consider only

the first interval [0, τ1] of linearity. We have: xi = 0, that is, i ∈ I(0) = J . We can write the

main equation governing Z and L,

Z(t) = X(t) +RL(t),

in the block form: [Z(t)]J = [X(t)]J + [R]J [L(t)]J + [R]JJc [L(t)]Jc

[Z(t)]Jc = [X(t)]Jc + [R]JcJ [L(t)]J + [R]Jc [L(t)]Jc

(4.22)

But [X(t)]Jc = [x + αeit]Jc = [x]Jc , because i ∈ J and i /∈ J c. Also, [X(t)]J = α[ei]Jt,

because xi = 0. Now it is straightforward to check that the functions Z(t) and L(t) given by

[Z(t)]J = 0, [Z(t)]Jc = |α|[R]JcJ [R]−1
J t+ [x]Jc ,

[L(t)]Jc = 0, [L(t)]J = |α|[R]−1
J [ei]Jt,

satisfy the system (4.22). Let us now verify that for j = 1, . . . , d, the boundary term Lj can

grow only when Zj = 0. This follows from the fact that

Zj(t) ≡ 0, j ∈ J ; Lj(t) ≡ 0, j ∈ J c.

The next step is to check that L is nondecreasing and Z is nonincreasing on [τ0, τ1]. Indeed,

by Lemma 4.6.1 [R]−1
J ≥ 0, and [ei]J ≥ 0, so

|α|[R]−1
J [ei]J ≥ 0. (4.23)
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Therefore, L is nondecreasing on [0, τ1]. Next, R is a reflection nonsingular M-matrix, so

off-diagonal elements of R (in particular, all elements of [R]JcJ) are nonpositive. From this

and (4.23) it follows that

|α|[R]JcJ [R]−1
J [ei]J ≤ 0.

So Z is nonincreasing on [0, τ1]. We have the formula

τ1 := inf{t ≥ 0 | I(t) 6= I(0)} ∧ T,

so τ1 is the first moment (no later than the time horizon T ) when Z “new” parts of the

boundary, and the function I increases. If this moment comes later than T , then we let

τ1 = T . By definition of τ1, we have: I(0) ( I(τ1). So the set-valued function I is constant

on [0, τ1), but increases by a jump at τ1.

Part (iii) follows from (ii) and the memoryless property.

4.4.4 Exact formulas for a system of competing particles with a regular linear driving func-

tion

Let us now do a similar calculation as in the previous subsection, but for a system of compet-

ing particles instead of a Skorohod problem. First, let us informally describe the dynamics

of these particles. Recall that the driving function is given by (4.17).

Without loss of generality, assume α > 0. The case α = 0 is trivial (Y (t) ≡ X(t) ≡ x

and L(t) ≡ 0), and the case α < 0 can be reduced to α > 0 by the following lemma. (The

proof is trivial and is omitted.)

Lemma 4.4.10. Suppose Y = (Y (t), t ≥ 0) is a system of N competing particles with

parameters of collision (q±k )1≤k≤N and driving function X. Then −Y := (−Y (t), t ≥ 0) is

also a system of N competing particles with parameters of collision (q̃±n )1≤n≤N , where

q̃+
n = q−N−n+1, q̃

−
n = q+

N−n+1, n = 1, . . . , N,

and driving function −X.
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A system of competing particles involves colliding particles, and “asymmetric collisions”

means that they “have different mass”. We can rewrite the expression

X(t) = x+ αeit

in the coordinate form:

Xi(t) = xi + αt, Xj(t) = xj, j 6= i.

This means that the ith ranked particle “wants” to move to the right with speed α, and all

other particles “want” to stay motionless. But when the particles, say with ranks i and i+1,

collide, they move together to the right with a new speed (smaller than α). The collision

term for particles Yi and Yi+1 starts to increase linearly from zero when they first collide. All

other particles stay motionless. When these two particles hit, say, the i+ 2nd particle Yi+2,

then these three particles stick together and move to the right. The collision terms L(j,j+1)

for all other pairs of adjacent particles Yj, Yj+1 stay zero. Indeed, even if Yj(t) = Yj+1(t),

but Yj and Yj+1 are not moving, then no collision term is required to keep them in order:

Yj(t) ≤ Yj+1(t). But the collision term L(i+1,i+2) starts to increase, and the collision term

L(i,i+1) continues to increase.

In other words, at any time t there is a set

I(t) = {j = i, . . . , N | Yj(t) = Yi(t)} (4.24)

of particles which are moving together with Yi to the right at this moment t. Since these

particles satisfy

Y1(t) ≤ Y2(t) ≤ . . . ≤ YN(t),

the set I(t) has the form

I(t) = {i, i+ 1, . . . , k(t)}

for some k(t) = i, . . . , N . The speed of this movement depends on k(t). When these moving

particles hit a new particle Yk(t)+1, then the set I increases by a jump. So we have a sequence

of moments of hits:

0 = τ0 < τ1 < . . . < τK = T.
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At any interval between these moments, I(t) is constant, the particles Yj, j ∈ I(t) move to

the right, and all other particles do not move.

Now, let us do the precise calculation.

Lemma 4.4.11. There exists a sequence of moments

0 = τ0 < τ1 < . . . < τK := T

such that on each [τl−1, τl), the set-valued function I defined in (4.24) is constant, but it

jumps and increases at each τl (except maybe τK = T ). On each [τl−1, τl), define

βl = α

[
1 +

q−i
q+
i+1

+
q−i q

−
i+1

q+
i+1q

+
i+2

+ . . .+
q−i q

−
i+1 . . . q

−
kl−1

q+
i+1q

+
i+2 . . . q

+
kl

]
,

kl ≡ k(t) for t ∈ [τl−1, τl). Then we have:

Yj(t) = const, j ∈ Ic(t); and Yj(t) ≡ Yi(t) = Yi(τl−1) + βl(t− τl−1), j ∈ I(t). (4.25)

The moment τl is defined as

τl = inf{t ≥ τl−1 | I(t) 6= I(τl−1)} ∧ T.

As before, we use the convention inf ∅ = +∞.

Proof. Similarly to the previous subsection, we can use the memoryless property and induc-

tion by l to assume that l = 0. Assume I(0) = {i, . . . , k0}, so initially the “leading” particle

i was at the same position as particles with ranks i+1, . . . , k0. Note that we care only about

particles with ranks larger than i, because the particle with rank i is moving to the right.

Even if, say, the particle with rank i− 1 occupied the same position initially as the particle

with rank i, they will not interact: the particle Yi, together with Yi+1, . . . , Yk0 , will move

rightward and“leave” the idle particle i− 1 at its place. So we have: on [0, τ1],

L(1,2)(t) = . . . = L(i−1,i)(t) = L(k0,k0+1)(t) = . . . = L(N−1,N)(t) = 0,
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and Y1, . . . , Yi−1, Yk0+1, . . . , YN are constant on this time interval. The dynamics of the

particles Yi, . . . , Yk0 on [0, τ1] is described as follows:

Yi(t) = Yi+1(t) = . . . = Yk0(t),

Yi(t) = xi + αt− q−i L(i,i+1)(t),

Yi+1(t) = xi+1 + q+
i+1L(i,i+1)(t)− q−i+1L(i+1,i+2)(t),

. . .

Yk0(t) = xk0 + q+
k0
L(k0−1,k0)(t).

But xi = xi+1 = . . . = xk0 , because Yi(0) = Yi+1(0) = . . . = Yk0(0) (the initial positions of

particles with ranks i, i+ 1, . . . , k0 are the same). We can solve this system: multiplying the

third equation in the system above by q−i /q
+
i+1, the fourth by q−i q

−
i+1/q

+
i+1q

+
i+2, etc. and add

these equations. We get the equation (4.25). Since Yi(t) is an increasing function, it might

hit Yk0+1(0) = xk0+1 before the time horizon T . (If it does not, there is nothing else to prove.)

Then τ1 is this hitting moment. The set-valued function I is constant on [0, τ1) but jumps

at τ1. Using the memoryless property and induction, we repeat this proof starting from τ1

time instead of 0. Since the function I increases at every τl, and it can take set values which

contain {i} and are contained in {i, . . . , N}, there will be at most N + 1 induction steps.

4.4.5 Proof of Theorem 4.2.1

Take driving functions as in (4.10) satisfying (4.11). Let τ0 := 0, τ1, . . . , τK := T be the

sequence of moments described in Lemma 4.4.9, and let τ 0 := 0, τ 1, . . . , τK := T be the

corresponding sequence of moments for the driving function X instead of X. Arrange all

these moments in the increasing order:

ρ0 := 0 < ρ1 := τ1 ∧ τ 1 < ρ2 < . . . < ρM := T.

Then it suffcies to show the theorem for t ≤ ρ1. Indeed, suppose that we prove this, then we

can use the memoryless property for Skorohod problems and prove this for ρ1 ≤ t ≤ ρ2, then
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for ρ2 ≤ t ≤ ρ3, etc. Extending the result from [0, ρ1] to [0, T ] requires reasoning analogous

to the argument in proof of Lemma (4.4.8).

On [0, ρ1], we know explicit expressions for Z, Z, L and L from Lemma 4.4.9. Let I(t) be

the set-valued function defined in Lemma 4.4.9, and I(t) be the same function for X instead

of X. Consider the following cases.

Case 1. 0 ≤ α ≤ α. Then Z(t) ≡ X(t), Z(t) ≡ X(t), L(t) ≡ L(t) ≡ 0, and the statement

is obvious.

Case 2. α ≤ 0 ≤ α. Then Z is nonincreasing, Z = X is nondecreasing, L(t) ≡ 0, and L

is nondecreasing. The statement follows trivially.

Case 3. α ≤ α ≤ 0, and xi > 0. Since x ≤ x, we have: xi > 0, and the rest is exactly as

in Case 1.

Case 4. α ≤ α ≤ 0, and xi = 0, xi > 0. Then I(0) ) I(0), and on [0, ρ1) we have:

L(t) ≡ 0, L is nondecreasing, so

L(t)− L(s) ≥ L(t)− L(s), 0 ≤ s ≤ t ≤ ρ1.

Furthermore, Z(t) ≡ X(t) = xi + αeit. And Z(t) is given by:

Zj(t) = 0 ≤ Zj(t), j ∈ I(0);

Z(t) is nonincreasing, so for j /∈ I(0) we have: Zj(t) = Zj(0) = const. Thus,

Zj(t) ≤ Zj(0) ≤ Zj(0) = Zj(t).

Case 5. α ≤ α ≤ 0, and xi = xi = 0. This is the most difficult case. We again have:

I(0) ⊆ I(0), and on [0, ρ1] we get:

Case 5.1. j ∈ I(0), Zj(t) ≡ Zj(t) ≡ 0, so trivially

Zj(t)− Zj(s) ≤ Zj(t)− Zj(s), 0 ≤ s ≤ t.
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Furthermore,

[L(t)]I(0) = |α|[R]−1

I(0)
[ei]I(0)t, [L(t)]I(0) = |α|[R]−1

I(0)[ei]I(0)t.

Applying Lemma 4.6.6 to J = I(0), we get that [R]I(0) is a reflection nonsingularM-matrix.

Applying Lemma 4.6.1 to [R]I(0) instead of R and J = I(0), we get:

[R]−1

I(0)
≤ [[R]−1

I(0)]I(0).

Also, [ei]I(0) = [[ei]I(0)]I(0) ≥ 0, and |α| ≤ |α|. Since R ≤ R, we have: [R]I(0) ≤ [R]I(0). Both

[R]I(0) and [R]I(0) are reflection nonsingularM-matrices of the same size, so by Lemma 4.6.5

we have:

[R]−1

I(0)
≥ [R]−1

I(0)
≥ 0. (4.26)

In addition, by Lemma 4.6.4 we have:[
[R]−1

I(0)[ei]I(0)

]
I(0)
≥
[
[R]−1

I(0)

]
I(0)

[
[ei]I(0)

]
I(0)

(4.27)

Combining (4.26), (4.27) and the fact that |α| ≤ |α|, we get: for 0 ≤ s ≤ t ≤ ρ1,

[L(t)]I(0) − [L(s)]I(0) = |α|
[
[R]−1

I(0)[ei]I(0)

]
I(0)

(t− s) ≥ |α|
[
[R]−1

I(0)

]
I(0)

[
[ei]I(0)

]
I(0)

(t− s)

≥ |α|[R]−1

I(0)
[ei]I(0)(t− s) ≥ |α|[R]−1

I(0)
[ei]I(0)(t− s) = [L(t)]I(0) − [L(s)]I(0).

In other words, for j ∈ I(0),

Lj(t)− Lj(s) ≥ Lj(t)− Lj(s), 0 ≤ s ≤ t ≤ ρ1.

Case 5.2. j ∈ I(0) \ I(0). Then Zj(t) = 0 ≤ Zj(t). Now, Lj is always nondecreasing,

and Zj > 0, so Lj ≡ 0. Thus,

Lj(t)− Lj(s) ≥ 0 = Lj(t)− Lj(s), 0 ≤ s ≤ t ≤ ρ1.

Case 5.3. j /∈ I(0). Then j /∈ I(0). Let

Ic(0) := {1, . . . , d} \ I(0), I
c
(0) := {1, . . . , d} \ I(0).
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The components of Z as Z corresponding to the index set I
c
(0) have the following dynamics:[Z(t)]Ic(0) = [Z(0)]Ic(0) + |α|[R]Ic(0)I(0)[R]−1
I(0)[ei]I(0)t,

[Z(t)]Ic(0) = [Z(0)]Ic(0) + |α|[R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0)t.

Since R and R are reflection nonsingular M-matrices, and R ≤ R, we have:

rij ≤ rij ≤ 0, i 6= j. (4.28)

In particular, this is true for i ∈ Ic(0), j ∈ I(0), as well as for i ∈ I
c
(0), j ∈ I(0). But

I(0) ⊇ I(0), and so Ic(0) ⊆ I
c
(0). Therefore,

[Z(t)]Ic(0) = [Z(0)]Ic(0) + |α|t
[
[R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0)

]
Ic(0)

= [Z(0)]Ic(0) − |α|t
[
[−R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0)

]
Ic(0)

.

It follows from (4.28) that

0 ≤ [−R]Ic(0)I(0) ≤ [−R]Ic(0)I(0). (4.29)

Also, [R]−1

I(0)
≥ 0, [ei]I(0) ≥ 0. By Lemma 4.6.3,[

[−R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0)

]
Ic(0)

= [−R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0). (4.30)

By Lemma 4.6.7 and inequalities (4.29) and (4.30),

[−R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0) ≤ [−R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0). (4.31)

Since I(0) ⊆ I(0), applying Lemma 4.6.1, we get:

0 ≤ [R]−1

I(0)
≤
[
[R]−1

I(0)

]
I(0)

, (4.32)

Therefore, applying Lemma 4.6.7 again, and using that [ei]I(0) =
[
[ei]I(0)

]
I(0)

, we have:

[−R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0) ≤ [−R]Ic(0)I(0)

[
[R]−1

I(0)

]
I(0)

[
[ei]I(0)

]
I(0)

. (4.33)
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By Lemma 4.6.2 (applied twice)

[−R]Ic(0)I(0)

[
[R]−1

I(0)

]
I(0)

[
[ei]I(0)

]
I(0)
≤ [−R]Ic(0)I(0)[R]−1

I(0)[ei]I(0). (4.34)

Combining (4.31), (4.32), (4.33) and (4.34), we get:

0 ≤
[
[−R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0)

]
Ic(0)
≤ [−R]Ic(0)I(0)[R]−1

I(0)[ei]I(0).

But we also have: |α| ≥ |α| ≥ 0. So

0 ≤
[
[−R]Ic(0)I(0)[R]−1

I(0)
[ei]I(0)

]
Ic(0)
|α|t ≤ [−R]Ic(0)I(0)[R]−1

I(0)[ei]I(0)|α|t.

Finally, we get:

[Z(t)]Ic(0) ≥ [Z(0)]Ic(0) − |α|t[−R]Ic(0)I(0)[R]−1
I(0)[ei]I(0)

≥ [Z(0)]Ic(0) + |α|t[R]Ic(0)I(0)[R]−1
I(0)[ei]I = [Z(t)]Ic(0).

So for j ∈ Ic(0) we get:

0 ≤ Zj(t) ≤ Zj(t), t ∈ [0, ρ1].

Finally, since Zj(t) > 0 and Zj(t) > 0 for t ∈ [0, ρ1), we have: Lj = Lj = 0 on this interval,

and trivially

Lj(t)− Lj(s) ≥ Lj(t)− Lj(s), 0 ≤ s ≤ t ≤ ρ1.

The proof is complete.

4.4.6 Proof of Theorem 4.2.2.

As in the previous subsection, it suffices to prove the theorem for coupled regular linear

driving functions

X(t) = x+ αeit, X(t) = x+ αeit,

which satisfy the conditions of Theorem 4.2.2. This means that x ≤ x, and α ≤ α. Assume

the converse: there exist t ∈ [0, T ] and j = 1, . . . , N such that Yj(t) > Y j(t). Since Yk(0) ≤

Y k(0), k = 1, . . . , N , we can let

τ0 := inf{t ≥ 0 | ∃j = 1, . . . , N : Yj(t) > Y j(t)}.
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In other words,

Yk(τ0) ≤ Y k(τ0), k = 1, . . . , N,

but there exists j = 1, . . . , N such that for every ε > 0 there exists t ∈ (τ0, τ0 + ε) such that

Yj(t) > Y j(t). W.l.o.g. by memoryless property, assume τ0 = 0. Then Yj(0) = Y j(0). Recall

that I(t) := {k = i, . . . , N | Yk(t) = Yi(t)}, and τ1 := inf{t ≥ 0 | I(t) 6= I(0)} ∧ T . Define

I(t) and τ 1 similarly for Y in place of Y . Let ε := τ1 ∧ τ 1.

Case 1. α ≤ 0 ≤ α. Then Yj are nonincreasing (follows from Lemma 4.4.11 and

Lemma 4.4.10), Y j are nondecreasing, and the statement is trivial.

Case 2. α ≤ α ≤ 0. This can be reduced to Case 3 by Lemma 4.4.10.

Case 3. 0 ≤ α ≤ α. If j < i, then particles Yj and Y j lie below Yi(0) = Y i(0)

and therefore Yj(t) = Y j(t) = const on [0, ε]. Now, if j ≥ i. Suppose j /∈ I(0), that is,

Yj(0) > Yi(0). Then, again, the particle Yj is unaffected by Yi moving upward, at least not

until Yi hits Yj, that is, not until τ1 ∧ τ 1. But the particle Y j is nondecreasing, according to

Lemma 4.4.11, so Y j(t) ≥ Yj(t) on [0, ε).

Therefore, we are left with the case j ∈ I(0). Equivalently, Yj(0) = Yi(0). And Yj(0) =

Y j(0) ≥ Y i(0), so Yi(0) ≥ Y i(0). But by the conditions of the theorem, Yi(0) ≤ Y i(0), so

Yi(0) = Y i(0). Thus,

Yi(0) = Y i(0) = Yj(0) = Y j(0),

and j ∈ I(0) ∩ I(0). However, I(0 ⊇ I(0), because if k ∈ I(0), then k ≥ i and

Yk(0) ≤ Y k(0) = Y i(0) = Yi(0) ≤ Yk(0),

so Yk(0) = Yi(0), and k ∈ I(0). Let I(0) = {i, . . . , k0}, and I(0) = {i, . . . , k0}. From

I(0) ⊆ I(0) it follows that k0 ≤ k0. Therefore, for t ∈ [0, ε] we have:

Yi(t) ≡ Yj(t) = Yi(0) + αt

[
1 +

q−i
q+
i+1

+
q−i q

−
i+1

q+
i+1q

+
i+2

+ . . .+
q−i q

−
i+1 . . . q

−
k0−1

q+
i+1q

+
i+2 . . . q

+
k0

]
,

Y i(t) ≡ Y j(t) = Y i(0) + αt

[
1 +

q−i
q+
i+1

+
q−i q

−
i+1

q+
i+1q

+
i+2

+ . . .+
q−i q

−
i+1 . . . q

−
k0−1

q+
i+1q

+
i+2 . . . q

+
k0

]
.
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But

q+
k ≥ q+

k , q−k ≤ q−k , k = 1, . . . , N ; k0 ≤ k0,

so

1 +
q−i
q+
i+1

+
q−i q

−
i+1

q+
i+1q

+
i+2

+ . . .+
q−i q

−
i+1 . . . q

−
k0−1

q+
i+1q

+
i+2 . . . q

+
k0

≥ 1 +
q−i
q+
i+1

+
q−i q

−
i+1

q+
i+1q

+
i+2

+ . . .+
q−i q

−
i+1 . . . q

−
k0−1

q+
i+1q

+
i+2 . . . q

+
k0

.

And α ≤ α and Yi(0) = Y i(0), we have: Yi(t) ≤ Y i(t) for t ∈ [0, ε], which contradicts our

assumption. This completes the proof of Theorem 4.2.2.

4.5 The case of totally asymmetric collisions

So far we considered the case when the collisions between particles are either symmetric (the

local time of collision is split evenly between the particles) or asymmetric but not totally

asymmetric (the local time is split not evenly, but both particles receive a certain share of

the local time). We would like to consider totally asymmetric collisions, when all of the local

time is received by only one particle, and the other particle does not experience any influence

of a collision. In other words, when one particle reflects on the other. Similar systems were

considered in [38]; they are related to random matrices and random surfaces.

Suppose the particles with ranks k and k+ 1 collide. Then the share of the local time of

collision received by the kth particle is q−k , and the share received by the k + 1st particle is

q+
k+1, where q+

k+1 +q−k = 1, q+
k+1, q

−
k ≥ 0. So far we considered the case when these quantities

are strictly positive. Now we allow the possibility that one of them equals zero. Does the

system exist in this case? Consider finite systems of competing functions with asymmetric

collisions.

Theorem 4.5.1. (i) The matrix R is completely-S if and only if there do not exist 1 ≤ k ≤

l ≤ N such that q+
k = q−l = 1.

(ii) In this case, for every continuous driving function there exists a unique system of com-

peting functions with given continuous driving terms and parameters of collisions (q±k )1≤k≤N .
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Proof. (i) The matrix R is completely-S if and only if the matrix Q := IN−1 − R =

(qij)1≤i,j≤N−1 ≥ 0 has spectral radius strictly less than one. If there do not exist 1 ≤

k ≤ l ≤ N such that q+
k = q−l = 1, then we can consider QT as a substochastic matrix with

one of row sums strictly less than one. Similarly to [71, Section 2.1], we conclude that it has

spectral raduis strictly less than one. If there exist 1 ≤ k ≤ l ≤ N such that q+
k = q−l = 1,

then consider the principal submatrix Q̃ = (qij)k−1≤i,j≤l. It is easy to see that each column

sum of Q̃ is one, so Q̃′1 = 1, and QTv = v, where v = (vj)1≤j≤N−1, vj = 1 if k − 1 ≤ j ≤ l

and vj = 0 otherwise. So 1 is an eigenvalue of QT , and therefore of Q. This implies that R

is not completely-S.

(ii) Let X be the driving function. Let Z be the solution of the Skorohod problem with

driving function (X2 − X1, . . . , XN − XN−1)′ and reflection matrix R. Then Z is the gap

process for the would-be system Y of competing functions with the given parameters of

collision and driving function X. Now, suppose k0 is the minimal k = 1, . . . , N −1 such that

q+
k0

= 0. If there is no such k then let k0 = N . Let α1, α2, . . . , αk0 be defined by (3.10), and

αk0+1 = . . . = αN = 0. The rest of the proof goes as in Theorem 3.4.3.

4.6 Appendix: Technical Lemmata

Lemma 4.6.1. Take a d× d-reflection nonsingular M-matrix R and fix a nonempty subset

J ⊆ {1, . . . , d}. Then

0 ≤ [R]−1
J ≤ [R−1]J .

Proof. Since R = Id − Q, where Q ≥ 0 is a d × d-matrix with spectral radius strictly less

than one, we can apply the Neumann series:

R−1 = Id +Q+Q2 + . . . (4.35)

By Lemma 4.6.6, [R]J = I|J | − [Q]J is also a reflection nonsingular M-matrix, so we have:

[R]−1
J = I|J | + [Q]J + [Q]2J + . . .
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But from (4.35) we get:

[R−1]J = I|J | + [Q]J + [Q2]J + . . .

Let us show that [Qk]J ≥ [Q]kJ for k = 1, 2, 3, . . .. This can be proved by induction using

Lemma 4.6.2.

Lemma 4.6.2. Take nonnegative matrices A (m×d) and B (d×n), and let I ⊆ {1, . . . ,m},

J ⊆ {1, . . . , d}, K ⊆ {1, . . . , n} be nonempty subsets. Then

[A]IJ [B]JK ≤ [AB]IK .

Proof. Let A = (aij) and B = (bij). Then for i ∈ I and k ∈ K,

([A]IJ [B]JK)ik =
∑
j∈J

aijbjk ≤
d∑
i=1

aijbjk = (AB)ik = ([AB]IK)ik .

Lemma 4.6.3. Take a d × n-matrix A and a vector a ∈ Rn. Let I ⊆ {1, . . . , d} be a

nonempty subset. Then [Aa]I = [A]I×{1,...,n}a.

The proof is trivial.

Lemma 4.6.4. Take a d × d-nonnegative matrix A and a nonnegative vector a ∈ Rd. Let

J ⊆ {1, . . . , d} be a nonempty subset. Then [Aa]J ≥ [A]J [a]J .

The proof is trivial.

Lemma 4.6.5. Let R ≤ R be two d × d-reflection nonsingular M-matrices. Then R−1 ≥

R
−1 ≥ 0.

Proof. Apply Neumann series again: if

R = Id −Q, R = Id −Q,

then Q ≥ Q ≥ 0, and so Q
k ≥ Qk ≥ 0, k = 1, 2, . . .. Thus,

R−1 = Id +Q+Q2 ≥ Id +Q+Q
2

+ . . . = R
−1
.
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Lemma 4.6.6. If R is a d × d-reflection nonsingular M-matrix and I ⊆ {1, . . . , d} is a

nonempty subset, then [R]I is also a reflection nonsingular M-matrix.

Proof. Use Lemma 2.2.1 from Chapter 2, which corresponds to [103, Lemma 2.1]. A d× d-

matrix R = (rij) is a reflection nonsingular M-matrix if and only if

rii = 1, i = 1, . . . , d; rij ≤ 0, i 6= j,

and, in addition, R is completely-S, which means that for every principal submatrix [R]J of

R there exists a vector u > 0 such that [R]Ju > 0. Now, switch from R to [R]I . The same

conditions hold:

rii = 1, i ∈ I; rij ≤ 0, i 6= j, i, j ∈ I,

and, in addition, for every principal submatrix [[R]I ]J = [R]J of [R]I , where J ⊆ I, there

exists a vector u > 0 such that [R]Ju > 0. This means that [R]I is also a reflection nonsingular

M-matrix.

Lemma 4.6.7. If A ≥ B ≥ 0 and C ≥ D ≥ 0 are matrices such that the matrix products

AC and BD are well defined, then AC ≥ BD ≥ 0.

The proof is trivial.
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Chapter 5

TRIPLE AND SIMULTANEOUS COLLISIONS

In section 5.1, we state main results for systems of competing Brownian particles, both

classical and with asymmetric collisions. In section 5.2, we state the main result for an

SRBM in the orthant, and we prove it in section 5.3. The proof of results from section 5.1

is in section 5.4. Section 5.5 is an Appendix; it contains some technical proofs.

5.1 Results for Competing Brownian Particles: Theorems 5.1.1 and 5.1.3

Now, let us define the two concepts: a triple collision and a simultaneous collision.

Definition 22. A triple collision at time t occurs if there exists a rank k = 2, . . . , N − 1

such that Yk−1(t) = Yk(t) = Yk+1(t).

A triple collision is sometimes an undesirable phenomenon. For example, existence and

uniqueness of a strong solutions of the SDE (3.1) has been proved only up to the first moment

of a triple collision, see [59, Theorem 2]. In this chapter, we give a necessary and sufficient

condition for absence of triple collisions with probability one.

Definition 23. A simultaneous collision at time t occurs if there are ranks k 6= l such that

such that Yk(t) = Yk+1(t), Yl(t) = Yl+1(t).

Note that a triple collision is a particular case of a simultaneous collision. Let us state

the main result of this chapter.

Theorem 5.1.1. Consider a system from Definition 12.

(i) Suppose the sequence (σ2
n)1≤n≤N is concave, that is,

σ2
k+1 − σ2

k ≤ σ2
k − σ2

k−1, k = 2, . . . , N − 1. (5.1)
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Then, with probability one, there are no triple and no simultaneous collisions at any time

t > 0.

(ii) If the condition (5.1) fails for a certain k = 2, . . . , N−1, then with positive probability

there exists a moment t > 0 such that there is a triple collision between particles with ranks

k − 1, k, and k + 1 at time t.

The proof of this result is given in Section 5.4. We can state a remarkable corollary of

this theorem.

Corollary 5.1.2. Take a system from Definition 12. Suppose a.s. there are no triple colli-

sions at any moment t > 0. Then a.s. there are no simultaneous collisions at any moment

t > 0.

It is interesting that a system of N = 4 particles can have a.s. no simultaneous collisions

of the form

Y1(t) = Y2(t), Y3(t) = Y4(t), (5.2)

and at the same time it can have triple collisions with positive probability. For example, if

you take

σ1 = σ4 = 1, and σ2 = σ3 = 1− ε for sufficiently small ε > 0,

then there are a.s. no simultaneous collisions of the form (5.2), but with positive probability

there is a triple collision of ranked particles Y1, Y2, and Y3, and with positive probability

there is a triple collision of ranked particles Y2, Y3, and Y4. Another example: if

σ1 = σ3 = 1, and σ2 = σ4 = 1 + ε for sufficiently small ε > 0,

then there are a.s. no simultaneous collisions of the form (5.2), and a.s. no triple collisions

of ranked particles Y1, Y2, and Y3, but with positive probability there is a triple collision of

ranked particles Y2, Y3, and Y4. This is shown in Chapter 6 (which corresponds to the paper

[102, Subsection 1.2]).

We can also give a similar necessary and sufficient condition for the case of asymmetric

collisions.
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Theorem 5.1.3. Consider a system of competing Brownian particles with asymmetric col-

lisions from Definition 14.

(i) Suppose the following condition is true:

(q−k−1 + q+
k+1)σ2

k ≥ q−k σ
2
k+1 + q+

k σ
2
k−1, k = 2, . . . , N − 1. (5.3)

Then, with probability one, there are no triple and no simultaneous collisions at any time

t > 0.

(ii) If the condition (5.3) is violated for some k = 2, . . . , N − 1, then with positive prob-

ability there exists a moment t > 0 such that there is a triple collision between particles with

ranks k − 1, k, and k + 1 at time t.

Note that Theorem 5.1.1 is a particular case of this theorem for q±k = 1/2, k = 1, . . . , N .

Corollary 5.1.2 is also true for systems with asymmetric collisions.

Remark 11. A system of competing Brownian particles has a simultaneous collision at time

t if and only if the gap process hits non-smooth parts of the boundary ∂S at time t. This is

our method of proof: we state and prove results for an SRBM, and then we translate them

into the language of systems of competing Brownian particles.

5.2 Results for an SRBM in the Orthant: Theorem 5.2.1

In this subsection, we state a necessary and sufficient condition for an SRBM a.s. to avoid

non-smooth parts of the boundary. For the rest of this subsection, fix d ≥ 2. Suppose R is

a d × d reflection nonsingular M-matrix. Fix a vector µ ∈ Rd and a d × d positive definite

symmetric matrix A. Recall the notation S = Rd
+ and consider the process Z = (Z(t), t ≥

0) = SRBMd(R, µ,A), starting from some point x ∈ S.

Let us give a necessary and sufficient condition for an SRBM a.s. not hitting non-smooth

parts of the boundary ∂S of the orthant S.

Theorem 5.2.1. (i) Suppose the following condition holds:

rijajj + rjiaii ≥ 2aij, 1 ≤ i, j ≤ d. (5.4)
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Then with probability one, there does not exist t > 0 such that Z hits non-smooth parts of

the boundary at time t.

(ii) If the condition (5.4) is violated for some 1 ≤ i < j ≤ d, then with positive probability

there exists t > 0 such that Zi(t) = Zj(t) = 0.

Remark 12. The condition (5.4) can be written in the matrix form as RD + DRT ≥ 2A,

where D = diag(A) = diag(a11, . . . , add) is the diagonal d× d-matrix with the same diagonal

entries as A. The case when we have equality in (5.4) instead of inequality, is very important:

the condition

RD +DRT = 2A ⇔ rijajj + rjiaii = 2aij, 1 ≤ i, j ≤ d, (5.5)

is precisely the skew-symmetry condition, see Introduction.

Remark 13. Whether an SRBMd(R, µ,A) a.s. avoids non-smooth parts of the boundary

depends only on the matrices R and A, not on the initial condition Z(0) or the drift vector

µ. Some general results of this type are shown in subsection 3.2, Lemma 5.3.1. But the

actual probability of hitting non-smooth parts of the boundary, if it is positive, does depend

on µ and the initial condition, see Remark 15.

5.3 Proof of Theorem 5.2.1

5.3.1 Outline of the proof

We can define a reflected Brownian motion not only in the orthant, but in more general

domains: namely, in convex polyhedra, see [17]. Similarly to an SRBM in the orthant, this

is a process which behaves as a Brownian motion in the interior of the domain and is reflected

according to a certain vector at each face of the boundary. We can reduce an SRBM in the

orthant with an arbitrary covariance matrix to a reflected Brownian motion in a convex

polyhedron with identity covariance matrix. This construction is carried out in detail in

subsection 3.5, Lemma 5.3.6.
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Let us give a brief preview here. Consider an SRBM Z = (Z(t), t ≥ 0) in the orthant Rd
+

with covariance matrix A. Consider the process

Z = (Z(t), t ≥ 0), Z(t) = A−1/2Z(t), (5.6)

which is a reflected Brownian motion in the domain A−1/2Rd
+ := {A−1/2z | z ∈ Rd

+} with

identity covariance matrix.

For a reflected Brownian motion in a polyhedral domain with identity covariance matrix,

a sufficient condition (the skew-symmetry condition) for a.s. not hitting non-smooth parts

of the boundary is known, see [124, Theorem 1.1]. Note that there are two forms of the

skew-symmetry condition. One is for an SRBM in the orthant with arbitrary covariance

matrix, which is (5.5). The other is for a reflected Brownian motion in a convex polyhedron

with identity covariance matrix, which was introduced in [124]; in this chapter, it is going

to be given in (5.16). In Lemma 5.3.8 we prove that under this linear transformation (5.6),

these two conditions match. This justifies why they bear the same name. This allows us (in

Lemma 5.3.11) to prove part (i) of Theorem 5.2.1 under the skew-symmetry condition (5.5).

Now, we need to show this for a more general condition (5.4). We reduce this general case

to the case of the skew-symmetry condition (5.5) by stochastic comparison (Lemma 4.3.5).

We introduce an SRBM with new reflection matrix R̃ which satisfies the skew-symmetry

condition and such that R̃ ≥ R.

To prove part (ii), we first consider the case d = 2. The domain A−1/2R2
+ is in this case

a two-dimensional wedge, which can be written in polar coordinates

x1 = r cos θ, x2 = r sin θ,

as

0 ≤ r <∞, ξ2 ≤ θ ≤ ξ1,

where ξ1, ξ2 are angles such that ξ2 ≤ ξ1 ≤ ξ2 + π. We mentioned that a reflected Brownian

motion in this domain with zero drift vector and identity covariance matrix was studied in

[116], [121], [122], [123]. For this process, hitting non-smooth parts of the boundary means
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hitting the corner of the wedge (the origin). The result [116, Theorem 2.2] gives a necessary

and sufficient condition for a.s. avoiding the corner. Using the linear transformation (5.6),

we can then translate these results for an SRBM in the positive quadrant with general

covariance matrix. This proves (ii) for d = 2.

To prove Theorem 5.2.1 for the general d, we again use comparison techniques. We

consider any two components Zi, Zj of the process Z = (Z(t), t ≥ 0) = SRBMd(R, µ,A), and

compare them with a two-dimensional SRBM using comparison techniques from Chapter 4.

Some parts of the calculations in this proof below have been done in certain previous

articles. For example, the linear transformation z 7→ A−1/2z and the way it transforms an

SRBM in the orthant have been studied in the following articles: [52, Section 9, Theorem

23] (general dimension, under the skew-symmetry condition); [71, Proposition 2] (dimension

d = 2). However, to make the exposition as lucid and self-contained as possible, we decided

to do all calculations from scratch.

Remark 14. In this artlce, we define a reflected Brownian motion in Definition 4 as a semi-

martingale. Similarly, in the article [17] a reflected Brownian motion in a convex polyhedron

is defined in a semimartingale form; we present this in Definition 25. However, in the papers

[116] and [124], a reflected Brownian motion is not given in a semimartingale form. Instead,

it is defined as a solution to a certain submartingale problem: see Definition 26. We use the

semimartingale definition, and in Lemma 5.3.5 we prove that the semimartingale form of a

reflected Brownian motion also satisfies the submartingale definition. This shows that we

can indeed use the results from [116] and [124].

5.3.2 Girsanov removal of drift and independence of the initial conditions

In this subsection, fix d ≥ 2. Let R be a d × d reflection nonsingular M-matrix. Let A be

a d × d symmetric positive definite matrix, and let µ ∈ Rd. For every x ∈ S, denote by Px

the probability measure corresponding to the SRBMd(R, µ,A) starting from x.

Consider a general edge SI on the boundary ∂S. For example, S{i,j} = Si ∩ Sj for i 6= j
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is a piece of the non-smooth parts of the boundary ∂S. In this chapter, we are interested in

an SRBMd(R, µ,A) hitting or avoiding these edges. But for this subsection, we shall work

with a general edge SI of S.

The main result of this subsection is that the property of an SRBM to a.s. avoid SI is

independent of the starting point x ∈ S and of the drift vector µ. The proof is postponed

until the end of this subsection.

Proposition 5.3.1. Let Z = (Z(t) ≥ 0) be an SRBMd(R, µ,A). Let

p(x,R, µ,A) = Px (∃ t > 0 : Z(t) ∈ SI) .

Fix a d×d reflection nonsingularM-matrix R and a positive definite symmetric d×d matrix

A. Then one of these two statements is true:

• For all µ ∈ Rd and x ∈ S, we have: p(x,R, µ,A) = 0: (the edge SI is avoided).

• For all µ ∈ Rd and x ∈ S, we have: p(x,R, µ,A) > 0: (the edge SI is hit).

Remark 15. We can reformulate Lemma 5.3.1 as follows: whether an SRBMd(R, µ,A) hits

the edge SI does not depend on the initial conditions and the drift vector µ; it depends only

on the reflection matrix R and the covariance matrix A.

However, suppose SRBMd(R, µ,A) hits the edge SI , so the probability p(x,R, µ,A) is

positive. What is its exact value? This probability does depend on the drift vector µ and

the initial condition x ∈ S. Let us give a one-dimensional example: a reflected Brownian

motion on the positive half-line R+ with no drift. With probability one, it hits the origin

(which is the same as hitting the edge S{1}). But a reflected Brownian motion on R+ with

positive drift b, starting from x > 0, hits the origin with probability e−2bx, see [7, Part 2,

Section 2, formula 2.0.2]. This does depend on the drift b and the initial condition x.

Definition 24. We say that an SRBMd(R, µ,A) avoids non-smooth parts of the boundary

∂S of the orthant S if it avoids every edge SI with |I| = 2. Otherwise, we say that an

SRBMd(R, µ,A) hits non-smooth parts of the boundary ∂S.
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From the discussion just above, we see: the property of hitting non-smooth parts of the

boundary is independent of the initial condition x and of the drift vector µ. It depends

only on R and A. We can also see it from Theorem 5.2.1: the condition (5.4) involves only

elements of R and A.

5.3.3 Proof of Proposition 5.3.1

We split the proof of Lemma 5.3.1 in two steps. First, we show independence of a starting

point x ∈ S in Lemma 5.3.2, then of a drift vector µ ∈ Rd in Lemma 5.3.3, using the Girsanov

transformation.

Lemma 5.3.2. For fixed parameters R, µ,A of an SRBM, we have: either p(x,R, µ,A) = 0

for all x ∈ S, or p(x,R, µ,A) > 0 for all x ∈ S. In other words, either an SRBMd(R, µ,A)

hits the edge SI , or it avoids the edge SI .

Proof. Since the family of the processes Z = (Z(t), t ≥ 0) = SRBMd(R, µ,A), starting from

different points x ∈ S, is Feller continuous, the function

f(z) := Pz (∃t > 0 : Z(t) ∈ SI)

is continuous on S. Let P t(x,C) = Px(Z(t) ∈ C) be the transition function for the

SRBMd(R, µ,A). By the Markov property,

Pz (∃t > 1 : Z(t) ∈ SI) =

∫
S

P 1(z, dy)f(y). (5.7)

But

Pz (∃t > 1 : Z(t) ∈ SI) ≤ Pz (∃t > 0 : Z(t) ∈ SI) = f(z). (5.8)

Combining (5.7) and (5.8), we have:∫
S

f(y)P 1(z, dy) ≤ f(z).

Suppose for some z0 ∈ S we have: f(z0) > 0. Since f is continuous, there exists an open

neighborhood U of z0 in S such that f(z) ≥ f(z0)/2 > 0 for z ∈ U . But U has positive
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Lebesgue measure, and so P 1(z, U) > 0 for z ∈ S. Therefore, f(z) ≥ P 1(z, U)f(z0)/2 > 0

for all z ∈ S.

We have proved that if f(z0) > 0 for at least one z0 ∈ S, then f(z) > 0 for all z ∈ S.

This completes the proof of the lemma.

Lemma 5.3.3. Fix a nonempty subset I ⊆ {1, . . . , d}. Then an SRBMd(R, µ,A) avoids SI

if and only if an SRBMd(R, 0, A) avoids SI .

Proof. Using Lemma 5.3.2, without loss of generality, fix a starting point z ∈ S, the same

for both processes. Let Z = SRBMd(R, µ,A), starting from z, and let Z = SRBMd(R, 0, A),

starting from z. Let P, P be the distributions of the processes Z,Z on the space C(R+,Rd)

of continuous functions R+ → Rd. For every T > 0, let GT be the σ-subalgebra of the

Borel σ-algebra of C(R+,Rd), generated by the values of x(s), 0 ≤ s ≤ T for all functions

x ∈ C(R+,Rd). By the Girsanov theorem, for every T > 0, the restrictions P |GT and P
∣∣
GT

are mutually absolutely continuous: they have common events of probability one. Therefore,

the following statements are equivalent:

• With probability 1, there is no t ∈ (0, T ] such that Z(t) ∈ SI ;

• With probability 1, there is no t ∈ (0, T ] such that Z(t) ∈ SI .

Suppose that with probability 1, there is no t > 0 such that Zi(t) = 0 for each i ∈ I; then

for every T > 0, with probability 1, there is no t ∈ (0, T ] such that Zi(t) = 0. Since T > 0 is

arbitrary, we have: with probability 1, there is no t > 0 such that Zi(t) = 0 for each i ∈ I.

The converse statement is proved similarly.

5.3.4 An SRBM in a convex polyhedron

Let us give a definition of an SRBM in convex polyhedra from [17]. Fix the dimension d ≥ 1.

First, let us define the state space, a polyhedral domain P ⊆ Rd. Fix m ≥ 1, the number of

edges. Let n1, . . . , nm ∈ Rd be unit vectors, and let b1, . . . , bm ∈ R. The domain P is defined
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by

P := {x ∈ Rd | ni · x ≥ bi, i = 1, . . . ,m}. (5.9)

We assume that the interior of P is nonempty and for each j = 1, . . . ,m we have:

{x ∈ Rd | ni · x ≥ bi, i = 1, . . . ,m, i 6= j} 6= P . (5.10)

In this case, the edges of P :

Pi = {x ∈ P | ni · x = bi}, i = 1, . . . ,m,

are (d − 1)-dimensional. Note that the vectors ni, i = 1, . . . ,m, are inward unit normal

vectors to each of the faces P1, . . . ,Pm. Now, let us define an SRBM in the domain P . Fix

the parameters of this SRBM: a vector µ ∈ Rd, a d × d positive definite symmetric matrix

A and a d×m-matrix R.

Definition 25. Fix a starting point x ∈ P . Take B = (B(t), t ≥ 0) to be a d-dimensional

Brownian motion with drift vector µ and covariance matrix A, starting from x. Take an

adapted continuous P-valued process Z = (Z(t), t ≥ 0) and an adapted continuous Rm-

valued process

L = (L(t), t ≥ 0), L(t) = (L1(t), . . . , Lm(t))′,

such that:

(i) Z(t) = B(t) +RL(t), t ≥ 0;

(ii) for every i = 1, . . . ,m, Li(0) = 0, Li is nondecreasing and can increase only when

Z(t) ∈ Pi.

The process Z is called a semimartingale reflected Brownian motion (SRBM) in the

domain P with reflection matrix R, drift vector µ and covariance matrix A. This process is

denoted by SRBMd(P , R, µ,A).

Remark 16. A particular case is an SRBM in the orthant S, which was introduced in Section

2: SRBMd(R, µ,A) is the same as SRBMd(S,R, µ,A).
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Let vi be the ith column of R. An SRBMd(P , R, µ,A) behaves as a d-dimensional Brow-

nian motion with drift vector µ and covariance matrix A inside P . On each face Pi, it is

reflected in the direction of the vector vi.

The paper [17] contains an existence and uniqueness result for an SRBM in P . We

present this result in a slightly weaker version, which is still sufficient for our purposes. For

any nonempty subset I ⊆ {1, . . . ,m}, let PI := ∩i∈IPi. A positive linear combination of

vectors u1, . . . , uq is any vector α1u1 + . . .+ αquq with α1, . . . , αq > 0.

Assumption 1. For every nonempty subset I ⊆ {1, . . . ,m}, we have:

(i) PI 6= ∅ and PJ ( PI for I ( J ⊆ {1, . . . ,m};

(ii) there is a positive linear combination v of vectors vi, i ∈ I, such that v ·ni > 0, i ∈ I;

(iii) there is a positve linear combination n of vectors ni, i ∈ I, such that n ·vi > 0, i ∈ I.

The following result in an immediate corollary of [17, Theorem 1.3].

Proposition 5.3.4. Under Assumption 1, for every x ∈ P there exists in the weak sense

the process

Z(x) = (Z(x)(t), t ≥ 0) = SRBMd(P , R, µ,A),

starting from Z(x)(0) = x, and it is unique in law. This family of processes (Z(x), x ∈ P) is

Feller continuous strong Markov.

Remark 17. By Assumption 1(ii) applied to a subset I = {i}, we have: vi ·ni > 0. So we can

normalize vi to make vi · ni = 1. This is done by replacing vi by kivi for ki := (vi · ni)−1 and

replacing Li by k−1
i Li. Doing this for each i = 1, . . . ,m is called standard normalization. The

new reflection matrix is R = RD, where D = diag((v1 · n1)−1, . . . , (vm · nm)−1). If vi = kivi

is the ith column of R, we can decompose it into the sum

vi = ni + qi, (5.11)

where

qi · ni = (vi − ni) · ni = vi · ni − ni · ni = 1− 1 = 0, i = 1, . . . ,m.
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These vectors ni and qi are called the normal and tangential components of the reflection

vector vi, respectively. Similar normalization was done for an SRBM in the orthant in [8,

Appendix B].

As mentioned above, in the papers [116], [121], [122], [124], [123], reflected Brownian

motion was defined as a solution to a certain submartingale problem. We are going to show

that if an SRBM is defined in a semimartingale form, as in Definition 25, then it is also a

solution to this submartingale problem, so we can use the results of the papers mentioned

above.

Definition 26. Take a convex polyhedron P from (5.9) and the parameters R, µ,A from

Definition 25. The symbol C2
c (P) stands for the family of twice continuously differentiable

functions f : P → R with compact support. Define the following operator for functions

f ∈ C2
c (P):

Lf :=
1

2

d∑
i=1

d∑
j=1

aij
∂2f

∂xi∂xj
+

d∑
i=1

µi
∂f

∂xi
.

A P-valued continuous adapted process Z = (Z(t), t ≥ 0) is called a solution to the sub-

martingale problem associated with (P , R, µ,A), starting from x ∈ P , if:

(i) Z(0) = x a.s.;

(ii) for every function f ∈ C2
c (P) which satisfies

vi · ∇f(x) ≥ 0 for x ∈ Pi, for each i = 1, . . . ,m,

the following process is an (Ft)t≥0-submartingale:

Mf = (Mf (t), t ≥ 0), Mf (t) = f(Z(t))−
∫ t

0

Lf(Z(s))ds.

Lemma 5.3.5. The process SRBMd(P , R, µ,A), starting from x ∈ P, is a solution to the

submartingale problem associated with (P , R, µ,A), starting from x.

The proof is postponed until the Appendix (Section5.6).
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5.3.5 Connection between an SRBM in the orthant and an SRBM in a convex polyhedron

Using the linear transformation (5.12), we can switch from an SRBMd(R, µ,A) in the orthant

with covariance matrix A to an SRBMd in a convex polyhedron with identity covariance

matrix.

Lemma 5.3.6. Consider the process Z = (Z(t), t ≥ 0), which is an SRBMd(R, µ,A). Define

a new process Z = (Z(t), t ≥ 0) as follows:

Z(t) = A−1/2Z(t). (5.12)

(i) The process Z is an SRBMd(P , R, µ, Id) in the convex polyhedron

P := {A−1/2z | z ∈ S} = {z ∈ Rd | A1/2z ≥ 0}, (5.13)

with reflection matrix R := A−1/2R, drift vector µ := A−1/2µ and covariance matrix A = Id.

The domain P is a convex polyhedron as in (5.9) with m = d edges: Pi := {A−1/2x | x ∈

Si}, i = 1, . . . , d. This domain satisfies the condition (5.10) and the Assumption 1 (i).

(ii) The standard normalization from Remark 17 gives us a new reflection matrix: R̃ :=

RD1/2 = A−1/2RD1/2. The ith column of R̃ is equal to

vi := a
1/2
ii A

−1/2Rei, i = 1, . . . , d. (5.14)

The inward unit normal vector to the face Pi is given by

ni = a
−1/2
ii A1/2ei, i = 1, . . . , d. (5.15)

Furthermore, Assumption 1(ii) and (iii) is satisfied.

Proof. (i) We have: Z(t) = B(t) + RL(t), where B = (B(t), t ≥ 0) is the driving Brownian

motion for the process Z, and L = (L(t), t ≥ 0) is the vector of regulating processes.

Here, B is a d-dimensional Brownian motion with drift vector µ and covariance matrix A.

Define W = (W (t), t ≥ 0) as W (t) = A−1/2B(t): this is a d-dimensional Brownian motion
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with drift vector µ = A−1/2µ and identity covariance matrix. Then Z(t) := A−1/2Z(t) =

W (t) + A−1/2RL(t). The state space of Z is the domain P , given in (5.13). This is a

convex polyhedron of the type (5.9). Let us show it satisfies the condition (5.10) and the

Assumption 1 (i). The linear transformation (5.12) is a bijection Rd → Rd, hence it suffices

to show that the orthant S satisfies the condition (5.10) and the Assumption 1 (i), which is

straightforward.

(ii) The face Pi is spanned by vectors A−1/2ej, j ∈ {1, . . . , d} \ {i}. The vector ni is

normal to Pi, so we must have: ni · A−1/2ej = 0. Since the matrix A−1/2 is symmetric,

A−1/2ni · ej = 0 for j ∈ {1, . . . , d} \ {i}. Therefore, A−1/2ni = kiei for some ki ∈ R; so

ni = kiA
1/2ei. Let us find ki such that ni is inward oriented and has unit length.

The inward orientation means that for any point w in the relative interior of the face

Pi, that is, in Pi \ (∪j 6=iPj), there exists ε > 0 such that w + εni ∈ P . But the domain

P is obtained from the orthant S = Rd
+ by the linear transformation (5.12). So we have:

w = A−1/2z for some z in the relative interior Si \ (∪j 6=iSj) of the face Si of ∂S. We must

have w + εni ∈ P . But

w + εni = A−1/2 (z + εkiAei) , and P = {A−1/2x | x ∈ S}.

Therefore, w + εni ∈ P ⇔ z + εkiAei ∈ S. Since z ∈ Si, we have: zi = 0, and (Aei)i =

aii > 0. But zi + εki(Aei)i = (z + εkiAei)i ≥ 0, so we must have: ki ≥ 0. Now, let us find

|ki| using the fact that ‖ni‖ = 1. Since the matrix A1/2 is symmetric, we have:

‖A1/2ei‖ =
[
A1/2ei · A1/2ei

]1/2
=
[
A1/2(A1/2ei) · ei

]1/2
= [Aei · ei]1/2 = a

1/2
ii .

But ‖ni‖ = 1, and ni = kiA
1/2ei. So |ki|a1/2

ii = 1, and |ki| = a
−1/2
ii . Earlier, we proved that

ki ≥ 0. Therefore, ki = a
−1/2
ii , which proves (5.15). Now, let us show (5.14). The ith column

of A−1/2R is equal to A−1/2Rei. Using the fact that the matrix A1/2 is symmetric, we have:

A−1/2Rei · ni = A−1/2Rei · a−1/2
ii A1/2ei = a

−1/2
ii A1/2A−1/2Rei · ei

= a
−1/2
ii Rei · ei = a

−1/2
ii rii = a

−1/2
ii .
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Therefore, the standard normalization defined in Remark 17 leads to

vi := a
1/2
ii A

−1/2Rei, i = 1, . . . , d,

which proves (5.14). Now, let us show that the Assumption 1(ii) and (iii) is satisfied. Note

that the matrix A1/2 is symmetric, so for every i, j = 1, . . . , d we have:

vi · nj =a
1/2
ii a

−1/2
jj A−1/2Rei · A1/2ej = a

1/2
ii a

−1/2
jj A1/2A−1/2Rei · ej

= a
1/2
ii a

−1/2
jj Rei · ej = a

1/2
ii a

−1/2
jj rij.

Fix a nonempty subset I ⊆ {1, . . . , d} with |I| = p. Since the matrix R is completely-

S, the submatrix [R]I is an S-matrix. There exist positive numbers αi, i ∈ I, such that∑
j∈I rijαj > 0 for i ∈ I. Take n =

∑
j∈I a

1/2
jj αjnj. This is a positive linear combination

of nj, j ∈ I, and vi · n =
∑

j∈I a
1/2
ii rijαj > 0 for i ∈ I. This proves Assumption 1(iii).

Similarly, the transposed matrix R′ is also completely-S (this follows from Lemma 2.2.1(ii)),

so repeating this argument with R′ in place of R, we can prove Assumption 1(ii).

5.3.6 A skew-symmetry condition for a convex polyhedron

Consider a reflected Brownian motion in a general convex polyhedron in general dimension

d ≥ 2. Then a sufficient condition for a.s. not hitting non-smooth parts of the boundary is

given by [124, Theorem 1.1]. It is called the skew-symmetry condition. In the subsequent

exposition, we define this condition in (5.16), and show that it is equivalent (under the linear

transformation (5.12)) to the skew-symmetry condition (5.5). This is the reason why these

two conditions have the same name.

Definition 27. Consider an SRBMd(P , R, µ,A) with µ = 0 and A = Id. Suppose the matrix

R is normalized, as described in Remark 17. We say that the skew-symmetry condition holds

if

ni · qj + nj · qi = 0, 1 ≤ i, j ≤ m. (5.16)
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This justifies the name of this condition: the matrix (ni · qj)1≤i,j≤m must be skew-

symmetric.

We say that an SRBM Z = (Z(t), t ≥ 0) hits non-smooth parts of the boundary ∂P at

time t > 0 if there exist 1 ≤ i < j ≤ m such that Z(t) ∈ Pi ∩ Pj. This is a generalization of

the concept of an SRBM in the orthant hitting non-smooth parts of the boundary. For an

SRBM in a two-dimensional wedge, this is equivalent to hitting the corner of the wedge (the

origin): a process Z = (Z(t), t ≥ 0) with values in this wedge hits the corner at time t > 0

if Z(t) = 0.

Proposition 5.3.7. Under Assumption 1 and the skew-symmetry condition (5.16), an

SRBMd(P , R, µ,A),

starting from some point x ∈ P \ ∂P in the interior of the polyhedral domain P a.s. does

not hit non-smooth parts of the boundary at any time t > 0.

Proof. Follows from Lemma 5.3.5, Proposition 5.3.4 and [124, Theorem 1.1].

The following lemma shows the equivalence of the two forms (5.5) and (5.16) of the

skew-symmetry condition under the linear transformation (5.12).

Lemma 5.3.8. Consider the process Z = (Z(t), t ≥ 0) = SRBMd(R, µ,A). Let Z be the

process defined by (5.12). Then the skew-symmetry condition in the form (5.5) holds for Z

if and only if the skew-symmetry condition in the form (5.16) holds for Z.

Proof. Suppose (5.5) is true. Using (5.14), (5.15) and the fact that vi = ni+qi, i = 1, . . . ,m

(in this case m = d), we have:

ni · qj + nj · qi = ni · (vj − nj) + nj · (vi − ni) = ni · vj − nj · vi − 2ni · nj

= a
−1/2
ii A1/2ei · a1/2

jj A
−1/2Rej + a

−1/2
jj A1/2ej · a1/2

ii A
−1/2Rei − 2a

−1/2
ii a

−1/2
jj A1/2ei · A1/2ej.

Since the matrix A1/2 is symmetric, we have:

a
−1/2
ii A1/2ei · a1/2

jj A
−1/2Rej = a

−1/2
ii a

1/2
jj

(
ei · A1/2A−1/2Rej

)
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= a
−1/2
ii a

1/2
jj (ei ·Rej) = a

−1/2
ii a

1/2
jj rij,

similarly

a
−1/2
jj A1/2ej · a1/2

ii A
−1/2Rei = a

−1/2
jj a

1/2
ii rji,

and finally

a
−1/2
ii a

−1/2
jj A1/2ei · A1/2ej = a

−1/2
ii a

−1/2
jj

(
ei · A1/2A1/2ej

)
= a

−1/2
ii a

−1/2
jj (ei · Aej) = a

−1/2
ii a

−1/2
jj aij.

Therefore,

ni · qj + nj · qi = a
−1/2
ii a

1/2
jj rij + a

−1/2
jj a

1/2
ii rji − 2a

−1/2
ii a

−1/2
jj aij

= a
−1/2
ii a

−1/2
jj [rijajj + rjiaii − 2aij] = 0.

The converse statement is proved similarly.

5.3.7 An SRBM in a two-dimensional wedge

A particular case of a polyhedral domain is a two-dimensional wedge (see Fig. 1), considered

in [116], [121], [122], [123]:

V := {(r cos θ, r sin θ) | 0 ≤ r <∞, ξ2 ≤ θ ≤ ξ1}.

Here, ξ2 < ξ1 < ξ2 + π. Its angle is defined as ξ := ξ1 − ξ2. Its boundary ∂V consists of two

edges

Vi := {(r cos ξi, r sin ξi) | 0 ≤ r <∞}, i = 1, 2.

The edge V1 is called the upper edge, and the edge V2 is called the lower edge. The difference

between them is as follows: the shorter way to rotate V1 to get V2 is clockwise rather than

counterclockwise. On each edge Vi, there is a reflection vector vi, which forms the angle

θi ∈ (−π/2, π/2) with the inward unit normal vector ni.

These angles are signed: positive angles θ1, θ2 are measured toward the vertex of V (the

origin). In other words, θ1 is the angle between n1 and v1, measured clockwise in the direction
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v2

v1

n2

n1

ξ θ2

θ1

Figure 2. A two-dimensional wedge.
Angles θ1 and θ2 are counted toward the vertex of the wedge
Here, n1 and n2 are normal vectors, v1 and v2 are reflection vectors

V2

V1

from n1 to v1. This means the following: if the shorter way to rotate the direction of n1 to

get the direction of v1 is clockwise, then θ1 > 0; and if it is counterclockwise, then θ1 < 0. If

v1 and n1 have the same direction, then θ1 = 0. Simlarly, θ2 is the angle between n2 and v2,

measured counterclockwise from n2 to v2.

We are interested in whether a reflected Brownian motion with zero drift vector and

identity covariance matrix in this wedge hits the corner. A necessary and sufficient condition

is established in [116, Theorem 2.2].

Proposition 5.3.9. Consider an SRBM Z = (Z(t), t ≥ 0) in the wedge V with µ = 0 and

A = I2, starting from a point x ∈ V \ ∂V.

(i) If θ1 + θ2 > 0, then a.s. there exists t > 0 such that Z(t) = 0.

(ii) If θ1 + θ2 ≤ 0, then a.s. there does not exist t > 0 such that Z(t) = 0.

Proof. Follows from Lemma 5.3.5, Proposition 5.3.4, and Theorem 2.2 from [116].

In the case of two dimensions, d = 2, the linear transformation (5.12) leads to an SRBM

in a two-dimensional wedge with identity covariance matrix. In the following lemma, we

explicitly calculate the parameters of this SRBM: the angle ξ of this wedge and the two

angles θ1, θ2 of reflection.
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Lemma 5.3.10. Suppose Z = SRBM2(R, 0, A) and Z is the process defined by (5.12). Then

the polyhedral domain P is in fact a wedge V with the angle

ξ = arccos

[
− a12√

a11a22

]
. (5.17)

The process Z is an SRBM in V with zero drift vector, identity covariance matrix and the

angles of reflection

θ1 = arcsin
a12 − a11r21√

a11 (a11r2
21 − 2a12r21 + a22)

, (5.18)

θ2 = arcsin
a12 − a22r12√

a22 (a22r2
12 − 2a12r12 + a11)

. (5.19)

Proof. First, note that A−1/2 is a positive definite matrix, so it has a positive determinant.

Therefore, the linear transformation (5.12) preserves the orientation of the plane R2
+. The

edges of this wedge are

Vi := A−1/2Si ≡ {A−1/2z | z ∈ Si}, i = 1, 2.

In fact, V1 is the upper edge, and V2 is the lower edge. Indeed, for the original quadrant S =

R2
+, the edge S1 = {x ∈ S | x1 = 0} is the upper edge, and the edge S2 = {x ∈ S | x2 = 0}

is the lower edge: in other words, the shorter way to rotate S1 to get S2 is clockwise rather

than counterclockwise. But under the transformation 5.6, S1 is mapped to V1, and S2 is

mapped to V2. This linear transformation preserves the orientation. Therefore, the shorter

way to rotate V1 to get V2 is also clockwise rather than counterclockwise. The edge V1 has a

directional vector c2 = A−1/2e2, while the edge V2 has a directional vector c1 = A−1/2e1. An

important remark: consider the notation Pi, i = 1, . . . , d, for edges of the polyhedron from

Lemma 5.3.6. Then our current notation V1 and V2 is consistent with this notation in the

sense that

V1 = P1 and V2 = P2. (5.20)

The angle ξ of the wedge is the angle between the edges V1 and V2. So ξ is the angle between

two vectors c1 = A−1/2e1 and c2 = A−1/2e2. Since the matrix A−1/2 is symmetric, we have:

cos ξ =
A−1/2e1 · A−1/2e2

‖A−1/2e1‖‖A−1/2e2‖
=

(A−1/2)2e1 · e2

[(A−1/2)2e1 · e1]
1/2

[(A−1/2)2e2 · e2]
1/2
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=
A−1e1 · e2

[A−1e1 · e1]1/2 [A−1e2 · e2]1/2
=

(A−1)12

(A−1)
1/2
11 (A−1)

1/2
22

.

But

A−1 =
1

a11a22 − a2
12

 a22 −a12

−a12 a11

 (5.21)

Therefore,

cos ξ = − a12√
a11a22

,

and we get (5.17). Let us find the reflection angles θ1 and θ2. For the quadrant S = R2
+, if

we rotate the directional vector e2 of the upper face S1 clockwise by π/2, we get an inward

normal vector to this face. But the linear transformation (5.12) preserves the orientation, so

a similar statement is true for the wedge V : if we rotate the directional vector c2 = A−1/2e2

of the upper face V1 of the wedge clockwise by π/2, then we get an inward normal vector

n1 ≡

(n1)1

(n1)2

 :=

 (c2)2

−(c2)1


Similarly, if we rotate the vector c1 = A−1/2e1 by π/2 counterclockwise, we get an inward

normal vector

n2 ≡

(n2)1

(n2)2

 :=

−(c1)2

(c1)1


to V1. These are not unit vectors: ni 6= ni. In fact, ‖n1‖ = ‖c2‖ and ‖n2‖ = ‖c1‖. But n1 has

the same direction as n1, and n2 has the same direction as n2. In other words, n1 = ‖n1‖n1

and n2 = ‖n2‖n2.

From Lemma 5.3.6 and (5.20), it follows that v1 = A−1/2r1 and v2 = A−1/2r2. These

vectors are not normalized in the sense of Remark 17. The angle θ1 between n1 and v1 has

a sign: it is calculated toward the origin, or, in other words, counterclockwise from n1 to v1.

But n1 and n1 have the same direction. Therefore, θ1 can be calculated as the signed angle

from n1 to v1 in the counterclockwise direction:

sin θ1 =
(n1)1(v1)2 − (n1)2(v1)1

‖n1‖‖v1‖
=
−(c2)2(v1)2 − (c2)1(v1)1

‖c2‖‖v1‖
= − c2 · v1

‖c2‖‖v1‖
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= − A−1/2e2 · A−1/2r1

‖A−1/2e2‖‖A−1/2r1‖
= − A−1/2e2 · A−1/2r1

[A−1/2e2 · A−1/2r1]
1/2

[A−1/2e2 · A−1/2r1]
1/2

Since the matrix A−1/2 is symmetric, the last expression is equal to

− A−1e2 · r1

[A−1e2 · e2]1/2 [A−1r1 · r1]1/2
.

Using the formula (5.21) for A−1 and the fact that r1 = (1, r21)′, we have:

sin θ1 =
a12 − a11r21√

a11 (a11r2
21 − 2a12r21 + a22)

.

Similarly, we can calculate the angle θ2:

sin θ2 =
a12 − a22r12√

a22 (a22r2
12 − 2a12r12 + a11)

.

Since θ1, θ2 ∈ (−π/2, π/2), we get (5.18) and (5.19).

5.3.8 Completion of the proof of Theorem 5.2.1

By Lemma 5.3.2, without loss of generality we can assume an SRBM starts from some point

x ∈ S \ ∂S, and µ = 0. First, we prove (i) in the case of the skew-symmetry condition (5.5),

then move to the general case (5.4). Then we prove (ii) in the case d = 2, and proceed to

the case of the general dimension.

Lemma 5.3.11. Take an SRBM in the orthant S, starting from x ∈ S \ ∂S. Suppose it

satisfies the skew-symmetry condition (5.5). Then the statement of Theorem 5.2.1(i) is true.

Proof. Apply the linear transformation (5.12) to Z = (Z(t), t ≥ 0) = SRBMd(R, 0, A). By

Lemma 5.3.6, we get an SRBM Z = (Z(t), t ≥ 0) in the polyhedron S = A−1/2S, given

by (5.13) with zero drift and identity covariance matrix. It was shown in Lemma 5.3.8 that

the skew-symmetry condition (5.16) is true. Therefore, by Proposition 5.3.7 the process Z

a.s. does not hit non-smooth parts of the boundary ∂S at any moment t > 0. Thus, the

process Z a.s. does not hit non-smooth parts of the boundary ∂S at any moment t > 0.
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Lemma 5.3.12. Take an SRBM in the orthant S, starting from x ∈ S \ ∂S. Suppose it

satisfies the condition (5.4). Then the statement of Theorem 5.2.1(i) is true.

Proof. Let us find another reflection nonsingularM-matrix R̃ = (r̃ij)1≤i,j≤d such that R ≥ R̃,

and the skew-symmetry condition (5.5) is true for an SRBMd(R̃, 0, A). We need:

r̃ijajj + r̃jiaii = 2aij, i, j = 1, . . . , d. (5.22)

Let r̃ij = 1 for i = j. Then (5.22) is true for i = j. Let

r̃ij =
1

ajj
[2aij − rjiaii] , r̃ji = rji, 1 ≤ i < j ≤ d.

This is well defined, since ajj > 0 (because the matrix A is positive definite). Also, r̃ij ≤ rij,

because rijajj+rjiaii ≥ 2aij. Since r̃ij ≤ rij ≤ 0 for i 6= j, R̃ is a Z-matrix, so condition (5.22)

holds. Therefore, by [55, Theorem 2.5] (compare conditions 12 and 16), R̃ is a nonsingular

M-matrix. Consider two processes Z = SRBMd(R, µ,A), Z̃ = SRBMd(R̃, µ, A), starting

from the same initial condition x ∈ S \ ∂S. Then we have: R and R̃ are d × d reflection

nonsingular M-matrices, and R ≥ R̃. By Proposition 4.3.5, we have: Z̃ is stochastically

smaller than Z. By [70, Theorem 5], we can claim that a.s. for all t > 0 we have: Z̃(t) ≤ Z(t)

(possibly after changing the probability space). By Lemma 5.3.11, the process Z̃ a.s. does

not hit non-smooth parts of the boundary at any time t > 0. In other words, for every

1 ≤ i < j ≤ d, we have: a.s. Z̃i(t) + Z̃j(t) > 0 for all t > 0. Therefore, a.s. Zi(t) +Zj(t) > 0

for all t > 0. Thus, with probability one the process Z does not hit non-smooth parts of the

boundary at any time t > 0.

Now, let us prove part (ii) of Theorem 5.2.1. We start with the case d = 2, then move to

the general case.

Lemma 5.3.13. Suppose we start an SRBM in two dimensions from a point x ∈ S \ ∂S in

the interior of S. Then the statement of Theorem 5.2.1 (ii) is valid.

Proof. Let Z = (Z(t), t ≥ 0) = SRBM2(R, 0, A). After the linear transformation (5.12),

we get the process Z = (Z(t), t ≥ 0) from (5.12), which is an SRBM in a wedge. If we
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show that θ1 + θ2 > 0, then by Lemma 5.3.9 we have: a.s. there exists t > 0 such that

Z(t) ≡ A−1/2Z(t) = 0; therefore, a.s. there exists t > 0 such that Z(t) = 0. But the angles

θ1, θ2 are given in the equations (5.18) and (5.19). Since θ1, θ2 ∈ (−π/2, π/2), we have:

θ1 + θ2 > 0 ⇔ sin θ1 + sin θ2 > 0,

which can be written as

a11r21 − a12√
a11 (a11r2

21 − 2a12r21 + a22)
+

a22r12 − a12√
a22 (a22r2

12 − 2a12r12 + a11)
< 0. (5.23)

Then we have:

r′12 := a
−1/2
11 a

1/2
22 r12, r′21 = a

1/2
11 a

−1/2
22 r21, ρ := a

−1/2
11 a

−1/2
22 a12.

We can rewrite the condition (5.23) as

r′12 − ρ√
(r′12)2 − 2ρr′12 + 1

+
r′21 − ρ√

(r′21)2 − 2ρr′21 + 1
< 0.

Or, equivalently, f(r′12 − ρ) + f(r′21 − ρ) < 0, where

f(x) :=
x√

x2 + 1− ρ2
.

Note that the matrix A is positive definite, so detA = a11a22 − a2
12 > 0. Therefore, ρ2 < 1.

It is easy to show that the function f is strictly increasing on R. In addition, this function

is odd: f(x) + f(−x) ≡ 0. Therefore, f(r′12 − ρ) + f(r′21 − ρ) < 0 is equivalent to

(r′12 − ρ) + (r′21 − ρ) < 0 ⇔ r12a22 + r21a11 < 2a12.

Lemma 5.3.14. The statement (ii) of Theorem 5.2.1 is valid in the case of general dimen-

sion, if we start an SRBM from a point x ∈ S \ ∂S in the interior of S.

Proof. Let Z = SRBMd(R, 0, A). Assume now that the condition (5.4) is not true, and for

some 1 ≤ i < j ≤ d we have:

rijajj + rjiaii < 2aij. (5.24)
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Consider the following two-dimensional SRBM: Z̃ = SRBM2([R]I , 0, [A]I), where I = {i, j}.

Applying Corollary 4.3.4 from Chapter 4 to I := {i, j}, we get: [Z]I � Z̃. By [70, Theo-

rem 5], we can switch from stochastic comparison to pathwise comparison: after changing

the probability space, we can claim that a.s. for all t > 0 we have: [Z(t)]I ≤ Z̃(t). By

Lemma 5.3.13, with positive probability, there exists t > 0 such that Z̃i(t) = Z̃j(t) = 0.

Therefore, with positive probability there exists t > 0 such that Zi(t) = Zj(t) = 0.

5.4 Proof of Theorems 5.1.1 and 5.1.3

Theorem 5.1.3 can be easily deduced from Theorem 5.2.1. First, let us prove part (i) of

Theorem 5.1.3. We need to rewrite the condition (5.4) for concrete matrices R and A arising

from competing Brownian particles, given by (3.6) and (3.8). Take i, j = 1, . . . , N − 1 and

consider the condition

rijajj + rjiaii ≥ 2aij. (5.25)

If i = j, then (5.25) is always true, because for such i, j we have: rij = rji = 1, and aii =

aij = ajj = σ2
i + σ2

i+1. If |i− j| ≥ 2, then (5.25) is also always true, since rij = rji = aij = 0.

Since the left-hand side and the right-hand side of (5.25) remain the same if we swap i and

j, we need only to check this condition for j = k, i = k− 1, where k = 2, . . . , N − 1. We get:

rij = −q−k , rji = −q+
k , ajj = σ2

k + σ2
k+1, aii = σ2

k−1 + σ2
k, aij = −σ2

k.

Therefore, the condition (5.25) takes the form

−q−k
(
σ2
k + σ2

k+1

)
− q+

k

(
σ2
k−1 + σ2

k

)
≥ −2σ2

k.

This is equivalent to (
2− q−k − q

+
k

)
σ2
k ≥ q−k σ

2
k+1 + q+

k σ
2
k−1. (5.26)

Note that q−k + q+
k+1 = 1 and q+

k + q−k−1 = 1. Therefore, we can rewrite (5.26) as in (5.3).

This proves part (i) of Theorem 5.1.3. Now, let us prove part (ii) of this theorem. Since the

condition (5.4) is automatically valid for i = j and for |i− j| ≥ 2, it can be violated only for
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i = j − 1. Suppose it does not hold for j = k and i = k − 1, where k = 2, . . . , N − 1 is some

index. Then with positive probability, there exists t > 0 such that

Zk−1(t) = Zk(t) = 0,

which can be written as

Yk−1(t) = Yk(t) = Yk+1(t).

This means that with positive probability, there is a triple collision between particles with

ranks k − 1, k and k + 1. This completes the proof of Theorem 5.1.3.

Theorem 5.1.1 is simply a corollary of Theorem 5.1.3: just plug parameters of collision

q±k = 1/2, k = 1, . . . , N into the inequality (5.3).

Remark 18. Let us explain the meaning of Corollary 5.1.2 informally. Consider the gap

process of a system of competing Brownian particles from Definition 14. This is an SRBM

Z = (Z(t), t ≥ 0) in the orthant with reflection matrix R and covariance matrix A, given

by (3.6) and (3.8). In this case, the condition (5.4) can be violated only for i = j−1, because

for i = j and |i− j| ≥ 2 it is automatically true.

When Zi(t) = Zj(t) = 0 for 1 ≤ i < j ≤ d, this corresponds to a simultaneous collision

at time t in this system of competing Brownian particles: Yi(t) = Yi+1(t) and Yj(t) =

Yj+1(t). But if, in addition, we know that i = j − 1, then this is a particular case of a

simultaneous collision: namely, a triple collision between particles with ranks j − 1, j and

j + 1. This implies that if the condition (5.4) does not hold, then with positive probability

there occurs a simultaneous collision of a special kind: a triple collision. This is the reason

why Corollary 5.1.2 is true.

5.5 Appendix: Proof of Lemma 5.3.5

Recall that the process Z = (Z(t), t ≥ 0) which is an SRBMd(P , R, µ,A) can be represented

as Z(s) = B(t) + RL(t). Here, B = (B(t), t ≥ 0) is a d-dimensional Brownian motion with

drift vector µ and covariance matrix A = (aij)1≤i,j≤d; R = (rij) is an m × d-matrix, and
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L = (L1, . . . , Lm)′, where each Li is nondecreasing. Therefore, the mutual variation of the

components of Z is calculated as follows: 〈Zi, Zj〉t = aijt, for i, j = 1, . . . , d. The process

(Bi(s) − µis, s ≥ 0) is a one-dimensional driftless Brownian motion. Since f ∈ C2
c (P), the

following process is a martingale:

M(t) =
d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))d(Bi(s)− µis).

Apply the Itô-Tanaka formula to f(Z(t)):

f(Z(t))− f(Z(0)) =
d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))dZ(s) +

1

2

d∑
i=1

d∑
j=1

∫ t

0

∂2f

∂xi∂xj
(Z(s))d〈Zi, Zj〉s

=
d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))d (Bi(s)− µis) +

d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))µids

+
1

2

d∑
i=1

d∑
j=1

aij

∫ t

0

∂2f

∂xi∂xj
(Z(s))ds+

d∑
i=1

∫ t

0

∂f

∂xi
(Z(s))d

[
m∑
j=1

rijLj(s)

]

= M(t) +

∫ t

0

Lf(Z(s))ds+
d∑
i=1

m∑
j=1

∫ t

0

rij
∂f

∂xi
(Z(s))dLj(s)

= M(t) +

∫ t

0

Lf(Z(s))ds+
m∑
j=1

∫ t

0

vj · ∇f(Z(s))dLj(s).

The third term in the last sum is nondecreasing. Indeed, for each j = 1, . . . ,m, the process Lj

is nondecreasing, and it can increase only when Z(s) ∈ Pj. But in this case, vj ·∇f(Z(s)) ≥ 0.

The rest is trivial.
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Chapter 6

MULTIPLE COLLISIONS

In this chapter, which corresponds to the author’s paper [102], we formulate general

theorems about an SRBMd(R, µ,A) avoiding an edge

SI := {z ∈ S | zi = 0 for all i ∈ I}

of the boundary ∂S, where I ⊆ {1, . . . , d} is a nonempty subset. We also find sufficient

conditions for avoiding collisions of competing Brownian particles. Examples 1.2.2, 1.2.3

and 1.2.4 from the Introduction are corollaries of the general results from this chapter.

The chapter is organized as follows. In Section 6.2, we state a few necessary definitions. In

Section 6.3, we formulate main results for classical systems of competing Brownian particles.

In Section 6.4, we state and prove results for an SRBM, which are used in Section 6.5 to

prove theorems from Section 6.3. In Section 6.6, we prove Theorem 6.2.2 for N = 4, which

is isolated from other results and cannot be generalized to N ≥ 5 (but this result is not

weaker than the other results). In Section 6.7, we consider the case of asymmetric collisions.

Although we do not state explicitly results for systems of competing Brownian particles with

asymmetric collisions, they can be derived from the general statements of Section 6.4. In

Section 6.8 (Appendix), we state and prove some technical lemmas.

6.1 Definitions

Definition 28. Consider a classical system of competing Brownian particles from Defini-

tion 12. We say that a collision of order M occurs at time t ≥ 0, if there exists k = 1, . . . , N

such that

Yk(t) = Yk+1(t) = . . . = Yk+M(t).
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A collision of order M = 2 is called a triple collision. A collision of order M = N − 1 is

called a total collision.

As mentioned before, a related example of a total collision (for a slightly different SDE)

was considered in the paper [6].

There is another closely related concept. We can have, for example, Y1(t) = Y2(t) and

Y4(t) = Y5(t) = Y6(t) at the same moment t ≥ 0. This is called a multicollision of a certain

order (this particular one is of order 3).

Definition 29. Consider a classical system of competing Brownian particles from Defini-

tion 12, and fix a nonempty subset I ⊆ {1, . . . , N−1}. A multicollision with pattern I occurs

at time t ≥ 0 if

Yk(t) = Yk+1(t), for all k ∈ I.

We shall sometimes say that there are no multicollisions with pattern I if a.s. there does not

exist t > 0 such that there is a multicollision with pattern I at time t.

A multicollision with pattern I has order M = |I|. If I = {k, k + 1, . . . , l − 2, l − 1},

then a multicollision with pattern I is, in fact, a multiple collision of particles with ranks

k, k + 1, . . . , l − 1, l. If I = {1, . . . , N − 1}, this is a total collision. If I = {k, l}, this is a

simultaneous collision. If I = {k, k + 1}, this is a triple collision.

It is worth providing some references about a diffusion hitting a lower-dimensional man-

ifold: the articles [39], [91], [92], [10], and the book [40].

6.2 Results for Competing Brownian Particles: Theorems 6.2.1, 6.2.3 and 6.2.2

6.2.1 Sufficient conditions for avoiding total collisions

Let us introduce some additional notation. Let M ≥ 2. For

α = (α1, . . . , αM)′ ∈ RM and l = 1, . . . ,M − 1,
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we define

cl(α) := −2(M − 1)

M
α2

1 +
2(M + 1)

M

l∑
p=2

α2
p +

2(M − 1)(M − l)− 4l

(M − l)M

M∑
p=l+1

α2
p.

We also denote by α← := (αM , . . . , α1)′ the vector α with components put in the reverse

order. Note that cM−1(α) = cM−1 (α←). Let

P(α) := min (c1(α), c1 (α←) , c2(α), c2 (α←) , . . . , cM−2(α), cM−2 (α←) , cM−1(α)) . (6.1)

For example, in cases M = 2 and M = 3 we have the following expressions for P(α):

P(α1, α2) = c1(α1, α2) = −α2
1 − α2

2 , (6.2)

P(α1, α2, α3) = min

(
8

3
α2

2 −
4

3
α2

1 −
4

3
α2

3,
2

3
α2

2 +
2

3
α2

3 −
4

3
α2

1,
2

3
α2

1 +
2

3
α2

2 −
4

3
α2

3

)
. (6.3)

Theorem 6.2.1. Consider a classical system of competing Brownian particles from Defini-

tion 12, and denote

σ := (σ1, . . . , σN)′.

If P(σ) ≥ 0 in the notation of (6.1), then a.s. there is no total collision at any time t > 0.

By modifying the proof of Theorem 6.2.1, one can obtain other conditions for lack of total

collisions. Unlike Theorem 6.2.1, however, this new result works only for N = 4 particles.

This result is due to Cameron Bruggeman.

Theorem 6.2.2. With N = 4 in the setting of Theorem 6.2.1, if

σ2
1 + σ2

4 ≤ σ2
2 + σ2

3, (6.4)

then a.s. there are no total collisions at any time t > 0.

As we will demonstrate in the following examples, neither set of conditions is strictly

stronger than the other.
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6.2.2 Examples of avoiding total collisions

In this subsection, we consider systems of N = 3, N = 4 and N = 5 particles. We apply

Theorem 6.2.1 to find a sufficient condition for a.s. avoiding total collisions. In particular,

we compare our results for three particles to a necessary and sufficient condition (5.1). We

also compare results for N = 4 particles given by Theorem (6.2.1) and Theorem 6.2.2.

Example 2. The case of N = 3 particles. In this case, “triple collision” is a synonym for

“total collision”. The quantity P(σ) is calcluated in (6.3), so P(σ) ≥ 0 is equivalent to
σ2

1 + σ2
3 ≤ 2σ2

2;

2σ2
1 ≤ σ2

2 + σ2
3;

2σ2
3 ≤ σ2

2 + σ2
1.

(6.5)

In fact, the first inequality in (6.5) follows from the second and the third ones. So (6.5) is

equivalent to 2σ2
1 ≤ σ2

2 + σ2
3;

2σ2
3 ≤ σ2

2 + σ2
1.

(6.6)

This sufficient condition is more restrictive than (5.1), which for N = 3 particles takes the

form 2σ2
2 ≥ σ2

1 + σ2
3, so Theorem 6.2.1 gives a weaker result than the result from Chapter 5,

mentioned in Proposition 5.1.1.

Example 3. The case of N = 4 particles. This result was already mentioned in the Intro-

duction as Proposition 1.2.2. The condition P(σ) ≥ 0 holds, if and only if all the following

five inequalities hold: 

9σ2
1 ≤ 7σ2

2 + 7σ2
3 + 7σ2

4;

3σ2
1 ≤ 5σ2

2 + σ2
3 + σ2

4;

3σ2
1 + 3σ2

4 ≤ 5σ2
2 + 5σ2

3;

3σ2
4 ≤ σ2

1 + σ2
2 + 5σ2

3;

9σ2
4 ≤ 7σ2

1 + 7σ2
2 + 7σ2

3.

(6.7)
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As mentioned in Section 6.1, let σ2
1 = σ2

2 = σ2
4 = 1, and σ2

3 = 0.9. Then there are triple

collisions between the particles Y2, Y3 and Y4 with positive probability, because the sequence

(σ2
1, σ

2
2, σ

2
3, σ

2
4) is not concave: it does not satisfy the condition (5.1). But the condition

P(σ) ≥ 0 is satisfied, so there are a.s. no total collisions. Note that this example satisfies

the conditions of Theorem 6.2.1, but fails to satisfy those of Theorem 6.2.2.

Example 4. The case of N = 5 particles. In this case P(σ) ≥ 0 is equivalent to the following

seven inequalities: 

8σ2
1 ≤ 7σ2

2 + 7σ2
3 + 7σ2

4 + 7σ2
5;

6σ2
1 ≤ 9σ2

2 + 4σ2
3 + 4σ2

4 + 4σ2
5;

4σ2
1 ≤ 6σ2

2 + 6σ2
3 + σ2

4 + σ2
5;

2σ2
1 + 2σ2

5 ≤ 3σ2
2 + 3σ2

3 + 3σ2
4;

8σ2
5 ≤ 7σ2

4 + 7σ2
3 + 7σ2

2 + 7σ2
1;

6σ2
5 ≤ 9σ2

4 + 4σ2
3 + 4σ2

2 + 4σ2
1;

4σ2
5 ≤ 6σ2

4 + 6σ2
3 + σ2

2 + σ2
1.

(6.8)

By analogy with the previous example, let σ2
1 = σ2

2 = σ2
4 = σ2

5 = 1, and σ2
3 = 0.9. Then

there are triple collisions among the particles Y2, Y3 and Y4 with positive probability, but

a.s. no total collisions.

Example 5. An application of Theorem 6.2.2. Take σ2
1 = σ2

3 = 10 and σ2
2 = σ2

4 = 1. Then

by Theorem 6.2.2 there are a.s. no total collisions, but this fails to satisfy the conditions

of Theorem 6.2.1. This, together with Example 3, shows that none of the two results:

Theorem 6.2.1 applied to the case of N = 4 particles, and Theorem 6.2.2, is stronger than

the other one.

6.2.3 A sufficient condition for avoiding multicollisions of a given pattern

For every nonempty finite subset I ⊆ Z, denote by I := I ∪ {max I + 1} the augmentation

of I by the integer following its maximal element. For example, if I = {1, 2, 4, 6}, then
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I = {1, 2, 4, 6, 7}. A nonempty finite subset I ⊆ Z is called a discrete interval if it has the form

{k, k+ 1, . . . , l− 1, l} for some k, l ∈ Z, k ≤ l. For example, the sets {2}, {3, 4}, {−2,−1, 0}

are discrete intervals, and the set {3, 4, 6} is not. Two disjoint discrete intervals are called

adjacent if their union is also a discrete interval. For example, discrete intervals {1, 2} and

{3, 4} are adjacent, while {3, 4, 5} and {10, 11} are not.

Every nonempty finite subset I ⊆ Z can be decomposed into a finite union of disjoint

non-adjacent discrete intervals: for example, I = {1, 2, 4, 8, 9, 10, 11, 13} can be decomposed

as {1, 2} ∪ {4} ∪ {8, 9, 10, 11} ∪ {13}. This decomposition is unique. The non-adjacency

is necessary for uniqueness: for example, {1, 2} ∪ {4} ∪ {8, 9, 10} ∪ {11} ∪ {13} is also a

decomposition into a finite union of disjoint discrete intervals, but {8, 9, 10} and {11} are

adjacent.

For a vector α = (α1, . . . , αM)′ ∈ RM , define

T (α) =
2(M − 1)

M

M∑
p=1

α2
p. (6.9)

For every discrete interval I = {k, . . . , l} ⊆ {1, . . . , N}, let P(I) := P (σk, . . . , σl) and

T (I) := T (σk, . . . , σl).

Consider a subset I ⊆ {1, . . . , N − 1}. Suppose it has the following decomposition into

the union of non-adjacent discrete disjoint intervals:

I = I1 ∪ I2 ∪ . . . ∪ Ir. (6.10)

Definition 30. We say that I satisfies assumption (A) if

r∑
j=1
j 6=i

T (Ij) + P(I i) ≥ 0, i = 1, . . . , r. (6.11)

We say that I satisfies assumption (B) if at least one of the following is true:

• at least two of discrete intervals I1, . . . , Ir are singletons;
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• at least one of discrete intervals I1, . . . , Ir consists of two elements {k − 1, k}, and the

sequence (σ2
j ) has local concavity at k:

σ2
k ≥

1

2

(
σ2
k−1 + σ2

k+1

)
; (6.12)

• there exists a subset

I ′ = Ii1 ∪ Ii2 ∪ . . . ∪ Iis

which satisfies the assumption (A).

Remark 19. (i) If a subset I ⊆ {1, . . . , N − 1} is a discrete interval, that is, the decomposi-

tion (6.10) is trivial, then Assumption (A) is equivalent to P(I) ≥ 0.

(ii) If a subset I ⊆ {1, . . . , N − 1} is a discrete interval of three or more elements, then

Assumption (B) is equivalent to P(I) ≥ 0.

(iii) If a subset I ⊆ {1, . . . , N − 1} contains two elements: I = {k, l}, k < l, then

Assumption (B) is automatically satisfied if k + 1 < l. If k + 1 = l, then Assumption (B) is

equivalent to the local concavity at l:

σ2
l ≥

1

2

(
σ2
l+1 + σ2

l−1

)
.

Indeed, as mentioned in Example 2, the condition P(I) ≥ 0 is more restrictive than local

concavity at l.

Theorem 6.2.3. Consider a system of competing Brownian particles from Definition 12.

Fix a subset J ⊆ {1, . . . , N − 1}. Suppose every subset I such that J ⊆ I ⊆ {1, . . . , N − 1}

satisfies assumption (B). Then there a.s. does not exist t > 0 such that the system has a

multicollision with pattern J at time t.

The following immediate corollary gives a sufficient condition for absence of multicollisions

of a given order (and, in particular, multiple collisions of a given order).
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Corollary 6.2.4. Consider a classical system of competing Brownian particles from Defini-

tion 12. Fix an integer M = 3, . . . , N , and suppose that every subset I ⊆ {1, . . . , N − 1}

with |I| ≥ M satisfies condition (6.11). Then a.s. there does not exist t > 0 such that the

system has a multicollision (and, in particular, a collision) of order M

6.2.4 Examples of avoiding multicollisions

In this subsection, we apply Theorem 6.2.3 to systems with a small number of particles:

N = 4 and N = 5. We consider different patterns of multicollisions.

Example 6. Let N = 4 (four particles) and J = {1, 3}. (This was already mentioned in

the Introduction as Proposition 1.2.3.) A multicollision with pattern J is the same as a

simultaneous collision of the following type:

Y1(t) = Y2(t) and Y3(t) = Y4(t). (6.13)

We need to check Assumption (B) for subsets I = J = {1, 3} and I = {1, 2, 3}. The subset

I = {1, 2, 3} is a discrete interval. According to Remark 19, we can apply Example 3,

and rewrite Assumption (B) as the system of five inequalities (6.7). For I = {1, 3}, the

decomposition (6.10) of I into the union of disjoint non-adjacent discrete intervals has the

following form: I = {1}∪{3}. Therefore, Assumption (B) is always satisfied. Therefore, the

system of five inequalities (6.7) is sufficient not only for avoiding total collisions in a system

of four particles, but also for avoiding multicollisions (6.13), with pattern J = {1, 3}.

Example 7. Let N = 4 and J = {1, 2}. Let us find a sufficient condition for a.s. avoiding

triple collisions of the type Y1(t) = Y2(t) = Y3(t). (This was already mentioned in the

Introduction, as Proposition 1.2.4.) There are two subsets I such that J ⊆ I ⊆ {1, 2, 3}:

I = {1, 2} and I = {1, 2, 3}. These two sets are both discrete intervals. As mentioned in the

Remark 19, Assumption (B) for I = {1, 2, 3} is equivalent to P(I) ≥ 0, which, in turn, is

equivalent to (6.7). Assumption (B) for I = {1, 2} is equivalent to local concavity at index

2: 2σ2
2 ≥ σ2

1 + σ2
3. We can write this as the system of six inequalities: local concavity at 2

and the five inequalities (6.7) from Example 3.
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Example 8. Consider N = 5 (five particles) and take the pattern J = {1, 2, 3}. This

corresponds to a collision of the following type:

Y1(t) = Y2(t) = Y3(t) = Y4(t). (6.14)

There are two subsets I such that J ⊆ I ⊆ {1, 2, 3, 4}: I = J = {1, 2, 3} and I = {1, 2, 3, 4}.

These two sets are both discrete intervals. As mentioned in the Remark 19, Assumption (B)

for each of these sets I takes the form P(I) ≥ 0: P({1, 2, 3, 4}) ≥ 0 and P({1, 2, 3, 4, 5}) ≥ 0.

We can write them as the system of twelve inequalities: the five inequalities (6.7) from

Example 3, and the seven inequalities (6.8) from Example 4.

Example 9. Consider N = 5 and take the pattern J = {1, 2, 4}. This corresponds to a

collision

Y1(t) = Y2(t) = Y3(t), and Y4(t) = Y5(t). (6.15)

There are two subsets I such that J ⊆ I ⊆ {1, 2, 3, 4}: I = J = {1, 2, 3} and I = {1, 2, 3, 4}.

The set I = {1, 2, 3, 4} is a discrete interval; by Remark 19, Assumption (B) for I =

{1, 2, 3, 4} takes the form P({1, 2, 3, 4, 5}) ≥ 0. This is equivalent to the conjunction of

the seven inequalities (6.8) from Example 4. For I = {1, 2, 4}, the situation is more compli-

cated. The decomposition of this I into a union of disjoint non-adjacent discrete intervals is

I = {1, 2} ∪ {4}. So Assumption (B) holds for this set I in one of the following cases:

• if there is local concavity at 2: σ2
2 ≥ (σ2

1 + σ2
3) /2;

• Assumption (A) holds for {1, 2}, which is equivalent to P({1, 2, 3}) ≥ 0, which, in

turn, is a stronger assumption than local concavity at 2 (see Example 2);

• Assumption (A) holds for {4}, which is when P({4, 5}) ≥ 0; but this is never true,

see (6.2);

• Assumption (A) holds for {1, 2} ∪ {4}, which is equivalent to

T ({1, 2, 3}) + P({4, 5}) ≥ 0, T ({4, 5}) + P({1, 2, 3}) ≥ 0. (6.16)
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But P({4, 5}) = P(σ4, σ5) = −σ2
4 − σ2

5, as in (6.2), and P({1, 2, 3}) = P(σ1, σ2, σ3) is given

by (6.3). Therefore, we have:

T ({1, 2, 3}) + P({4, 5}) =
4

3

(
σ2

1 + σ2
2 + σ2

3

)
− σ2

4 − σ2
5 ≥ 0, (6.17)

which can be written as

4σ2
1 + 4σ2

2 + 4σ2
3 ≥ 3σ2

4 + 3σ2
5. (6.18)

The other condition T ({4, 5}) +P({1, 2, 3}) ≥ 0 is equivalent to the system of the following

three inequalities: 
4σ2

1 + 4σ2
3 ≤ 8σ2

2 + 3σ2
4 + 3σ2

5;

4σ2
1 ≤ 2σ2

2 + 2σ2
3 + 3σ2

4 + 3σ2
5;

4σ2
3 ≤ 2σ2

1 + 2σ2
2 + 3σ2

4 + 3σ2
5.

(6.19)

Therefore, (6.16) is equivalent to the system of (6.18) and (6.19):

4σ2
1 + 4σ2

3 ≤ 8σ2
2 + 3σ2

4 + 3σ2
5;

4σ2
1 ≤ 2σ2

2 + 2σ2
3 + 3σ2

4 + 3σ2
5;

4σ2
3 ≤ 2σ2

1 + 2σ2
2 + 3σ2

4 + 3σ2
5;

4σ2
1 + 4σ2

2 + 4σ2
3 ≥ 3σ2

4 + 3σ2
5.

(6.20)

Assumption (B) holds for I = {1, 2} ∪ {4} if and only if there is local concavity at 2

or (6.20) hold. Thus, the system of seven inequalities (6.8) from Example 4, together with

local concavity at 2 or the four inequalities (6.20), is a sufficient condition for avoiding

multicollisions of pattern {1, 2, 4}.

Remark 20. We can also make use of the condition (6.4) instead of the five inequalities (6.7).

If the condition (6.4) is satisfied, then there are a.s. no simultaneous collisions (6.13) at

any time t > 0. Similarly, in all of the examples involving N = 4 particles avoiding certain

types of collisions, we can substitute the condition (6.4) instead of the five inequalities (6.7),

and the statement will still be true. In Example 7, the two conditions: (6.4) and the local
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concavity at the index 2, guarantee absence of triple collisions Y1(t) = Y2(t) = Y3(t). The

same works for Examples 8 and 9.

Example 10. Suppose we have three or more particles: N ≥ 3. Consider the case when all

diffusion coefficients are equal to one: σ1 = . . . = σN = 1. Then there are no triple and

multiple collisions, as well as no multicollisions of order M ≥ 3. To show this, we do not

even need to use Theorem 6.2.3. Indeed, using Girsanov transformation as in subsection

5.4.3 of this thesis, see also [103, Subsection 3.2], we can transform the classical system of

competing Brownian particles into N independent Brownian motions with zero drifts and

unit diffusions. Since the Bessel process of dimension two a.s. does not return to the origin,

there are a.s. no triple collisions and multicollisions of order M ≥ 3 for the system of

independent Brownian motions.

Still, we can apply our results to the case of unit diffusion coefficients. Consider total

collisions and apply Theorem 6.2.1. Let σ1 = . . . = σN = 1, so that σ = 1 = (1, 1, . . . , 1)′;

then it is straightforward to calculate that

cl(σ) = cl(σ
←) = 2N − 6, l = 1, . . . , N − 1.

Therefore, we have:

P(σ) = min(c1(σ), . . . , cN−2(σ), cN−1(σ), c1(σ←), . . . , cN−2(σ←)) = 2N − 6 ≥ 0.

Apply Theorem 6.2.1: the system avoids total collisions. How does this result change if we

move the diffusion coefficients σ2
1, . . . , σ

2
N a little away from 1? In other words, if the vector

σ is in a small neighborhood of 1 = (1, . . . , 1)′ ∈ RN , what can we say about absence of total

collisions?

If N = 3, then P(1) = 0. Even in a small neighborhood of 1, we can have either P(σ) ≥ 0

or P(σ) < 0. So we cannot claim that in a certain neighborhood of 1 we do not have any

total (in this case, triple) collisions. This is consistent with the results of Chapter 5. Indeed,

the inequality (5.1) takes the form

σ2
2 ≥

1

2

(
σ2

1 + σ2
3

)
. (6.21)
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This becomes an equality for σ = (σ1, σ2, σ3)′ = 1. The point 1 lies at the boundary of the

set of points in R3 given by (6.21). Or, equivalently, in any neighborhood of 1 there are both

points σ which satisfy (6.21) and which do not satisfy (6.21).

But for N ≥ 4 (four or more particles), we have: P(1) > 0. Since P(σ) is a continuous

function of σ, there exists a neighborhood U of 1 such that for all σ ∈ U we have: P(σ) > 0,

and the system of competing Brownian particles does not have total collisions.

6.3 Results and Proofs for an SRBM in the Orthant

6.3.1 Statements of results

There are three important theorems. First, we provide a sufficient condition for not hitting

the corner, and another sufficient condition for hitting the corner. Taken together, they do

not give us a necessary and sufficient condition, because there is a gap between them. In

this respect, these results are different from that of Chapter 5, where we gave a necessary

and sufficient condition for avoiding non-smooth parts of the boundary.

A remaining question is about hitting or avoiding a given edge SI of the boundary ∂S.

We provide another theorem which reduces it to the question of not hitting the corner. This

gives us a sufficient condition for not hitting the given edge of ∂S.

The last of these three main results is a sufficient condition for hitting a given edge of

∂S.

Definition 31. We say that the matrix R which is a reflection nonsingularM-matrix satis-

fies Assumption (C) if there exists a diagonal d× d-matrix C = diag(c1, . . . , cd) with ci > 0

such that R = RC is a symmetric matrix.

We denote R−1 = (ρij)1≤i,j≤d, and consider the following constants:

c+ := max
x∈S\{0}

x′R−1AR−1x

x′R−1x
, c− := min

x∈S\{0}

x′R−1AR−1x

x′R−1x
.

Lemma 6.3.1. These numbers c± are well defined and strictly positive.
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The (rather straightforward) proof is postponed until the Appendix. The following the-

orem is our main result about an SRBM hitting the corner.

Theorem 6.3.2. Suppose the matrix R satisfies Assumption (C).

(i) If the following condition is true:

tr
(
R−1A

)
≥ 2c+, (6.22)

then the SRBMd(R, µ,A) does not hit the corner.

(ii) If the following condition is true:

0 ≤ tr
(
R−1A

)
< 2c−, (6.23)

then the SRBMd(R, µ,A) hits the corner.

Sometimes the numbers c± are difficult to calculate. Let us give useful estimates of c+

from above, and of c− from below.

Lemma 6.3.3. Suppose the matrix R satisfies Assumption (C). If, in addition, ρij > 0 for

all i, j = 1, . . . , d, then

c+ ≤ c+ := max
1≤i≤j≤d

(R−1AR−1)ij
ρij

, c− ≥ c− := min
1≤i≤j≤d

(R−1AR−1)ij
ρij

.

The next theorem establishes a connection between not hitting the corner and not hitting

an edge. It is similar to results from [59], and we took the proof technique from [59].

Theorem 6.3.4. Consider an SRBMd(R, µ,A). Fix a nonempty subset J ⊆ {1, . . . , d}.

Suppose for every I such that J ⊆ I ⊆ {1, . . . , d} the process SRBM|I|([R]I , [µ]I , [A]I) does

not hit the corner. Then an SRBMd(R, µ,A) does not hit the edge SI .

The last of our main results about SRBM links hitting corners to hitting edges.
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Theorem 6.3.5. Consider an SRBMd(R, µ,A) with a reflection nonsingular M-matrix R.

Fix a nonempty subset I ⊆ {1, . . . , d}. Suppose an SRBM|I|([R]I , [µ]I , [A]I) hits the corner.

Then an SRBMd(R, µ,A) hits the edge SI .

This theorem is proved using stochastic comparison: it trivially follows from Proposi-

tion 4.3.4.

The rest of the section will be devoted to the proofs of Theorems 6.3.2 and 6.3.4.

6.3.2 Proof of Theorem 6.3.2

First, we present an informal overview of the proof, and then give a complete proof.

Outline of the proof

Let Z = (Z(t), t ≥ 0) be an SRBMd(R, µ,A), starting from z ∈ S. By Proposition 5.3.1, we

can assume z ∈ S \ ∂S, and µ = 0. Consider the function

F (x) := x′R−1x. (6.24)

Since the matrix R is a reflection nonsingular M-matrix, by Lemma 2.2.1 from Chapter 2,

which corresponds to [103, Lemma 2.1] the matrix R−1 has all elements nonnegative: ρij ≥ 0,

with strictly positive elements on the main diagonal: ρii > 0, i = 1, . . . , d. Therefore, if

F (x) = 0 for a certain x ∈ S, then x = 0. The process Z hits the corner if and only if the

process F (Z(·)) hits zero. Let L = (L(t), t ≥ 0) be the vector of regulating processes for Z,

and let B = (B(t), t ≥ 0) be the driving Brownian motion for Z, so that we have:

Z(t) = B(t) +RL(t), t ≥ 0. (6.25)

We see that the process Z has a diffusion term and a regulating process term. The reason for

applying the function F to this process is that, if we write an equation for F (Z(·)) using the

Itô-Tanaka formula, the terms corresponding to the regulating processes vanish, and F (Z(·))

is an Itô process.
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It turns out that its drift coefficient is constant and its diffusion coefficient is comparable

with that in the SDE for Bessel squared process. After an appropriate random time-change,

we can make the diffusion coefficient exactly equal to the one for a Bessel squared process.

However, this will not turn our process into a Bessel squared process. Indeed, the drift

coefficient for the new process will not be constant (and for a Bessel squared process, it is

constant). Still, we can bound this drift coefficient by a constant, which allows to compare

the new time-changed process with a Bessel squared process. But we know that a Bessel

squared process hits zero if and only if its index is less than two.

This allows us to find whether the process F (Z(·)) hits or does not hit zero. This, in

turn, is equivalent to whether the process Z hits the origin.

Complete proof

By Lemma 2.2.1, which corresponds to [103, Lemma 2.1] (equivalent characterization of

reflection nonsingular M-matrices), we have:(
R−1

)
ij
≥ 0, i, j = 1, . . . , d;

(
R−1

)
ii
> 0, i = 1, . . . , d.

Therefore, the matrix R−1 = C−1R−1 = (ρij)1≤i,j≤d has elements ρij = c−1
i (R−1)ij. By

Assumption 31, the matrix R−1 is symmetric. Therefore, its entries satisfy

ρij = ρji ≥ 0, i, j = 1, . . . , d; ρii > 0, i = 1, . . . , d. (6.26)

Recall the definition of function F from (6.24). From (6.26) we have: F (x) > 0 for x ∈ S\{0}.

Since the matrix R−1 is symmetric, the first and second order derivatives of the function F

are
∂F

∂xi
=
(
2R−1x

)
i

= 2
d∑

k=1

ρikxk,
∂2F

∂xi∂xj
= 2ρij, i, j = 1, . . . , d.

Note that 〈Zi, Zj〉t = 〈Bi, Bj〉t = aijt. By the Itô-Tanaka formula applied to the process Z

from (6.25) and the function F from (6.24), we have:

dF (Z(t)) =
d∑
i=1

∂F

∂xi
(Z(t))dZi(t) +

1

2

d∑
i=1

d∑
j=1

∂2F

∂xi∂xj
(Z(t))d〈Zi, Zj〉t (6.27)
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=
d∑
i=1

(
2R−1Z(t)

)
i
dBi(t) +

d∑
i=1

d∑
k=1

(
2R−1Z(t)

)
i
rikdLk(t) +

d∑
i=1

d∑
j=1

ρijaijdt

(6.28)

= 2
d∑
i=1

d∑
j=1

ρijZj(t)dBi(t) + 2
d∑
i=1

d∑
j=1

d∑
k=1

ρijZj(t)rikdLk(t) + tr
(
R−1A

)
dt.

(6.29)

For each j = 1, . . . , d, the regulating process Lj can grow only if Zj = 0: we express this

by writing Zj(t)dLj(t) = 0. Using this, we shall now show that the second term in (6.29) is

actually equal to zero:

d∑
i=1

d∑
j=1

d∑
k=1

ρijZj(t)rikdLk(t) =
d∑
i=1

d∑
j=1

d∑
k=1

ρjiZj(t)rikdLk(t)

=
d∑
j=1

d∑
k=1

(
R−1R

)
jk
Zj(t)dLk(t) =

d∑
j=1

d∑
k=1

(
C−1Id

)
jk
Zj(t)dLk(t)

=
d∑
j=1

d∑
k=1

c−1
j δjkZj(t)dLk(t) =

d∑
j=1

c−1
j Zj(t)dLj(t) = 0.

Therefore, the process F (Z(·)) does not have terms corresponding to the regulating processes.

Instead, F (Z(·)) has only an absolutely continuous term and a local martingale term: this

is an Itô process.

dF (Z(t)) = 2
d∑
i=1

d∑
j=1

ρijZj(t)dBi(t) + tr
(
R−1A

)
dt. (6.30)

Recall that B1, . . . , Bd are driftless one-dimensional Brownian motions (they are driftless,

because the drift µ = 0, according to our assumptions). Therefore, the following process is

a continuous local martingale:

M = (M(t), t ≥ 0), M(t) := 2
d∑
i=1

d∑
j=1

∫ t

0

ρijZj(s)dBi(s).

So we can rewrite (6.30) as

F (Z(t)) = F (z) +M(t) + tr
(
R−1A

)
t.
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Let us calculate the quadratic variation of M . It turns out to be comparable with that of

a Bessel squared process. Then we make a time-change to transform F (Z(·)) into a process

which can be compared to a Bessel squared process. Recall that, by definition of the process

B, 〈Bi, Bj〉t = aijt. Let

Mij(t) =

∫ t

0

∫ t

0

Zj(s)ρijdBi(s), i, j = 1, . . . , d.

For i, j, k, l = 1, . . . , d, we have:

〈Mij,Mkl〉t =

∫ t

0

Zj(s)ρijZl(s)ρklaikds.

But the quadratic variation of M =
∑d

i=1

∑d
j=1 Mij is equal to the sum

〈M〉t =
d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

〈Mij,Mkl〉t =
d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

∫ t

0

Zj(s)ρijZl(s)ρklaikds

=
d∑
i=1

d∑
j=1

d∑
k=1

d∑
l=1

∫ t

0

Zj(s)ρijaikρklZl(s)ds =

∫ t

0

(
Z ′(s)R−1AR−1Z(s)

)
ds.

Let τ = inf{t ≥ 0 | Z(t) = 0} be the first moment when the process Z hits the corner. Since

z = Z(0) ∈ S \ ∂S, we have: τ > 0 a.s. Let

q(s) :=
(
Z ′(s)R−1AR−1Z(s)

)1/2
, s ≥ 0.

Then we can represent M as the stochastic integral

M(t) = 2

∫ t

0

q(s)dW (s),

where W = (W (t), t ≥ 0) is a standard Brownian motion; and for s < τ , we have Z(s) ∈

S \ {0}, and F (Z(s)) > 0. It follows from the definition of constants c± that

1

2
c

1/2
− ≤

q(s)

2F 1/2(Z(s))
=

1

2

(
Z ′(s)R−1AR−1Z(s)

Z ′(s)R−1Z(s)

)1/2

≤ 1

2
c

1/2
+ .

Make the following time change:

∆(t) :=

∫ t

0

q2(s)

4F (Z(s))
ds, t ≤ τ.
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By [99, Lemma 2], this is a strictly increasing function on [0, τ ] with ∆(0) = 0. Denote

s0 := ∆(τ). Define the inverse of ∆ by

χ(s) := inf{t ≥ 0 | ∆(t) ≥ s}.

The following process will be compared with Bessel squared process:

V (s) ≡ F (Z(χ(s))), s ∈ [0, s0].

By [99, Lemma 2], the process V = (V (s), s ≥ 0) satisfies the following equation:

dV (s) = tr
(
R−1A

) V (s)

q2(χ(s))
ds+ v(F (Z(s)))dW (s)

= tr
(
R−1A

) V (s)

q2(χ(s))
ds+ 2V 1/2(s)dW (s).

Here, W = (W (t), t ≥ 0) is yet another standard Brownian motion. Note that

1

4
c− ≤ ∆′(s) =

q2(s)

4F (Z(s))
=
Z ′(s)R

−1
AR

−1
Z(s)

4Z ′(s)R
−1
Z(s)

≤ 1

4
c+.

So the mapping ∆ : [0, τ) → [0, s0) is one-to-one, and τ = ∞ if and only if s0 = ∞. Then

we have:

P (∃t > 0 : F (Z(t)) = 0) = 0 if and only if P (∃s > 0 : V (s) = 0) = 0.

Suppose the condition (6.22) holds. We need to prove that the process Z does not hit

the corner. Assume the converse. Then P(τ < ∞) > 0, so P(s0 < ∞) > 0. On the event

{s0 <∞}, we have: V (s0) = 0. Note that

V (s)

q2(χ(s))
≥ c−1

+ ,

and tr(R−1A) ≥ 2c+ ≥ 0, so

tr
(
R−1A

) V (s)

q2(χ(s))
≥ tr

(
R−1A

)
c−1

+ =: β ≥ 2.

Consider the squared Bessel process V = (V (s), s ≥ 0), given by the equation

dV (s) = 2V
1/2

(s)dW (s) + βds, V (0) = V (0).
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Since β ≥ 2, it is known (see, e.g., [97, Section 11.1, p. 442]) that V a.s. does not hit 0.

By standard comparison theorems, see for example [61, Chapter 6, Theorem 1.1], we have:

V (s) ≥ V (s) a.s. for s < s0. So if s0 < ∞, then by continuity V (s0) ≥ V (s0) > 0, but

V (s0) = 0. This contradiction completes the proof of (i). The proof of (ii) is similar.

6.3.3 Proof of Theorem 6.3.4

We prove this theorem using induction by d− |I|.

Induction base: d− |I| = 0, then I = {1, . . . , d}, and the statement is trivial.

Induction step: fix q = 0, 1, 2, . . . and suppose the statement is true for d− |I| = q− 1; then

prove it for d− |I| = q.

For ε ∈ (0, 1), let Kε = {x ∈ S | ε ≤ ‖x‖ ≤ ε−1}. Fix a point z ∈ S \ {0}, so that z ∈ Kε

for all ε > 0 small enough. Start a copy of an SRBMd(R, µ,A) from z. Denote this copy by

Z = (Z(t), t ≥ 0), and let B = (B(t), t ≥ 0) be its driving Brownian motion. Let

τ := inf{t ≥ 0 | Z(t) ∈ SI}

be the first moment when the process Z hits the edge SI . We need to show that τ =∞ a.s.

Let

ηε := inf{t ≥ 0 | Z(t) ∈ Kε}.

Note that ηε ≤ ηε′ when ε′ ≤ ε, and limε↓0 ηε =∞, because by assumptions of the theorem the

process Z does not hit the corner: Z(t) 6= 0 for all t ≥ 0 a.s. So it suffices to show that τ ≥ ηε

for all ε ∈ (0, 1). Fix an ε ∈ (0, 1). For every x ∈ Kε, there exists an open neighborhood

U(x) of x with the following property: there exists some index i = i(x) ∈ {1, . . . , d} such

that for all y ∈ U(x) we have: yi(x) > 0. Since Kε is compact, we can extract a finite subcover

U(x1), . . . , U(xs). Without loss of generality, let us include the neighborhood U(x0) of x0 = z

into this subcover. Now, define a sequence of stopping times:

τ0 := 0, j0 := 0; τk+1 := inf{t ≥ τk | Z(t) /∈ U (xjk)},



134

and jk+1 is defined as any j = 0, . . . , s such that Z (τk+1) ∈ U(xj). Suppose that, at some

point, we cannot find such j; in other words,

Z(τk+1) /∈ U (xj0) ∪ U (xj1) ∪ . . . ∪ U (xjs) .

Then the sequence of stopping times terminates, and we denote K := k + 1. In this case,

we have defined τ0, j0, τ1, j1, . . . , τK−1, jK−1, τK . If the sequence does not terminate, we let

K =∞. So we have:

Zjk(t) > 0 for t ∈ [τk, τk+1), k < K.

The sequence (τk) can be either finite or countable. Recall that U(xj), j = 0, . . . , s is a

cover of Kε. Therefore, supk τk ≥ ηε. It suffices to show that τ ≥ τk. We prove this using

induction by k.

Base: k = 1. If j0 ∈ I, then Zj0(t) > 0 for t < τ1, and so Z(t) /∈ SI . In this case, τ ≥ τ1

is straightforward. Now, if j0 /∈ I, then consider the set J := {1, . . . , d} \ {j0}. We have the

following representation:

([Z(t ∧ τ1)]J , t ≥ 0) = (Z(t ∧ τ1), t ≥ 0),

where Z = (Z(t), t ≥ 0) is an SRBMd−1([R]J , [µ]J , [A]J), starting from [z]J , with the driving

Brownian motion [B]J = ([B(t)]J , t ≥ 0). This process Z is well defined, since the matrix

[R]J is a reflection nonsingular M-matrix, and by Proposition 2.3.1 there exists a strong

version of Z. So by the induction hypothesis, a.s. there does not exist t ≥ 0 such that

Z(t) ∈ SI , because d − 1 − |I| = q − 1. For every y ∈ S, we have: y ∈ SI if and only if

[y]J ∈ SI . Therefore, for all t < τ1 we have: Z(t) /∈ SI . This proves that τ ≥ τ1.

Induction step: suppose t ≥ τk and k < K, that is, the sequence does not terminate at

this step. Then we need to prove τ ≥ τk+1. Consider the process (Z(t + τk), t ≥ 0). This is

a version of an SRBMd(R, µ,A), started from Z(τk). But

Z(τk) ∈ U (xj0) ∪ U (xj1) ∪ . . . ∪ U (xjs) .

There exists j = 0, . . . , s such that Z(τk) ∈ U(xj). In addition, Z(τk) ∈ S \ {0}, because

by induction hypothesis, the process Z never hits the corner. Apply the reasoning from the
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induction base to this process instead of the original SRBM. The moment τk+1 − τk plays

the role of τ1 above, and the moment τ − τk plays the role of τ . So τ − τk ≥ τk+1 − τk, and

τ ≥ τk+1. This completes the proof.

6.3.4 Corollaries of the main results for an SRBM

The following corollary of Theorem 6.3.4 gives a sufficient condition for not hitting edges of

a given order.

Corollary 6.3.6. Consider an SRBMd(R, µ,A). Fix p = 2, . . . , d − 1. Suppose for every

I ⊆ {1, . . . , d} such that |I| ≥ p the process SRBM|I|([R]I , [µ]I , [A]I) does not hit the corner.

Then an SRBMd(R, µ,A) does not hit edges of order p.

The next corollary combines the results of Theorem 6.3.2, Theorem 6.3.4 and Theo-

rem 6.3.5. Its proof is trivial and is omitted.

Corollary 6.3.7. Take an SRBMd(R, µ,A). Suppose the matrix R satisfies Assumption 31.

(i) Fix a nonempty subset J ⊆ {1, . . . , d}. Suppose that for every subset I such that

J ⊆ I ⊆ {1, . . . , d} we have:

tr
(
[R]−1

I [A]I
)
≥ 2 max

x∈R|I|+ \{0}

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

. (6.31)

Then the SRBMd(R, µ,A) avoids SI .

(ii) Fix p = 1, . . . , d− 1. Suppose for every subset I ⊆ {1, . . . , d} with |I| ≥ p we have:

tr
(
[R]−1

I [A]I
)
≥ 2 max

x∈R|I|+ \{0}

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

.

Then the SRBMd(R, µ,A) avoids edges of order p.

(iii) Suppose there exists a subset I ⊆ {1, . . . , d} such that

tr
(
[R]−1

I [A]I
)
< 2 min

x∈R|I|+ \{0}

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

.

Then the SRBMd(R, µ,A) hits SI .
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6.4 Proofs of Theorems 6.2.1 and 6.2.3

6.4.1 Outline of the proofs

Consider a system of competing Brownian particles from Definition 12. In Lemma 6.4.1, we

note that a multicollision with pattern I is equivalent to an SRBMN−1(R, µ,A) hitting the

edge SI of the N − 1-dimensional orthant RN−1
+ . Here, the parameters R, µ, A are given

by (3.16), (3.9) and (3.8) below. We apply Theorem 6.3.2 and Theorem 6.3.4 to this SRBM

to prove Theorems 6.2.1 and 6.2.3 respectively. We use the estimate in Lemma 6.3.3 for

c+, since the right-hand side of (6.22) seems hard to compute for matrices R and A given

by (3.16) and (3.8).

Since the matrix R from (3.16) is itself symmetric, we can take C = IN−1 and R = R.

The inverse matrix R−1 = R
−1

= (ρij)1≤i,j≤N−1 has the form

ρij =

2i(N − j)/N, i ≤ j;

2j(N − i)/N, i ≥ j

(6.32)

This result can be found in [13] or [56] (the latter article deals with a slightly different matrix,

from which one can easily find the inverse of the given matrix R).

After a (rather tedious) computation, we rewrite the condition (6.22) from Theorem 6.3.2

as P(σ) ≥ 0, where P(σ) is defined in (6.1). This proves Theorem 6.2.1.

Proving Theorem 6.2.3 is a bit harder. Apply Theorem 6.3.4, and fix a subset I ⊆

{1, . . . , N − 1} such that J ⊆ I. We need to find a sufficient condition for an

SRBM|I|([R]I , [µ]I , [A]I)

to a.s. avoid the corner of the orthant R|I|+ . We decompose the set I as in (6.10):

I = I1 ∪ I2 ∪ . . . Ir,

into a union of disjoint non-adjacent discrete intervals. In Lemma 6.4.7, we prove that if I

satisfies Assumption (B), then the SRBM|I|([R]I , [µ]I , [A]I) indeed avoids the corner. This
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completes the proof of Theorem 6.2.3. But to prove Lemma 6.4.7, we need to consider

different variants of decomposition (6.10). For example, if I1 = {1} and I2 = {3}, then this

guarantees that an SRBM|I|([R]I , [µ]I , [A]I) avoids the corner. Various cases are considered

in Lemmas 6.4.8, 6.4.9 and 6.4.10, which constitute the crux of the proof.

6.4.2 Collisions of particles and the gap process

The following lemma translates statements about multiple collisions and multicollisions of

competing Brownian particles to the language of an SRBM. The proof is trivial and is

therefore omitted.

Lemma 6.4.1. Consider a classical system of N competing Brownian particles. Then there

is a multicollision with pattern I at time t if and only if the gap process hits the edge SI at

time t. For example, there is a total collision at time t if and only if the gap process hits the

corner at time t.

For example, Y1(t) = Y2(t) and Y3(t) = Y4(t) = Y5(t) is a multicollision of order 3, with

pattern {1, 3, 4}, which is equivalent of the gap process hitting the edge {z1 = z3 = z4 = 0}.

Similarly, Y3(t) = Y4(t) = Y5(t) = Y6(t) is a collision of order 3 (which is also a particular

case of a multicollision of order 3, with pattern {3, 4, 5}), and it is equivalent to the gap

process hitting the edge {z3 = z4 = z5 = 0}.

6.4.3 Avoiding a multicollision depends only on diffusion coefficients

The following lemma tells us that the property of a system of competing Brownian particles

to avoid multicollisions with a given pattern is independent of the initial conditions x and

the drift coefficients g1, . . . , gN . In other words, it can possibly depend only on the diffusion

coefficients σ2
1, . . . , σ

2
N .

Lemma 6.4.2. Take a classical system of competing Brownian particles from Definition 12.

Fix I ⊆ {1, . . . , N − 1}, a pattern. Let x ∈ RN be the initial conditions, and let Px be the
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corresponding probability measure. Denote by

p (g1, g2, . . . , gN , σ1, σ2, . . . σN , x) (6.33)

the probability that there exists a moment t > 0 such that the system, starting from x, will

experience a multicollision with pattern I at this moment. For fixed σ1, . . . , σN > 0, either

p (g1, g2, . . . , gN , σ1, σ2, . . . σN , x) = 0 for all x ∈ RN , (gk)1≤k≤N ∈ RN ,

or

p (g1, g2, . . . , gN , σ1, σ2, . . . σN , x) > 0 for all x ∈ RN , (gk)1≤k≤N ∈ RN .

However, in the second case (when the probability (6.33) is positive) the exact value

of this probability depends on the initial conditions x and the drift coefficients g1, . . . , gN .

This follows from Remark 15 from Chapter 5, which corresponds to [103, Subsection 3.2,

Remark 5] and connection between competing Brownian particles and an SRBM, discussed

just above.

Proof. Follows from Lemma 2.2.1 ([103, Lemma 3.1]), and the reduction of multicollisions

to hitting edges of the orthant which was done right above.

6.4.4 Some preliminary calculations

As mentioned before, the matrix R in (3.16) is itself symmetric, so we take C = IN−1, and

R = R. Without loss of generality, let

ρij = 0, i = 0, N, j = 0, . . . , N or j = 0, N, i = 0, . . . , N.

This is consistent with the notation (6.32). Note that ρij > 0 for i, j = 1, . . . , N − 1:

all elements of the matrix R−1 are positive. Therefore, we can apply an estimate from

Lemma 6.3.3:

c+ := max
x∈RN−1\{0}

x′R−1AR−1x

x′R−1x
≤ max

1≤k≤l≤N−1

(
R−1AR−1

)
kl

ρkl
.
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Lemma 6.4.3. For the matrix R given by (3.16) and the matrix A given by (3.8), we have

in the notation of (6.9):

tr
(
R−1A

)
= T (σ) . (6.34)

Proof. Straightforward calculation gives

tr
(
R−1A

)
=

N−1∑
i=1

N−1∑
j=1

ρijaij =
N−1∑
i=1

(σ2
i + σ2

i+1)
2i(N − i)

N

+ 2
N−1∑
i=2

(−σ2
i )

2(i− 1)(N − i)
N

=
2(N − 1)

N
σ2

1 +
2(N − 1)

N
σ2
N

+
N−1∑
k=2

σ2
k

(
2k(N − k)

N
+

2(k − 1)(N − k + 1)

N
− 2

2(k − 1)(N − k)

N

)

=
2(N − 1)

N

N∑
k=1

σ2
k = T (σ).

The following lemma helps us simplify the matrix R−1AR−1, where A is given by (3.8),

and R−1 is given by (6.32).

Lemma 6.4.4. Consider the matrix A as in (3.8), and take a symmetric (N −1)× (N −1)-

matrix Q = (qij). Augment it by two additional rows and two additional columns, one from

each side, and fill them with zeros:

qij = 0 for i = 0, N, j = 0, . . . , N, and for j = 0, N, i = 0, . . . , N.

Then for k, l = 1, . . . , N − 1 we have:

(QAQ)kl =
N∑
p=1

(qpk − qp−1,k) (qpl − qp−1,l)σ
2
p.

Proof. The matrix A is tridiagonal:
aii = σ2

i + σ2
i+1, i = 1, . . . , N − 1;

ai,i+1 = ai+1,i = −σ2
i+1, i = 1, . . . , N − 2;

aij = 0, i, j = 1, . . . , N − 1, |i− j| ≥ 2.
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Using the symmetry of Q, we have:

(QAQ)kl =
N−1∑
i=1

N−1∑
j=1

qikqjlaij =
N−1∑
p=1

(
σ2
p + σ2

p+1

)
qpkqpl −

N−1∑
p=2

σ2
pqpkqp−1,l −

N−1∑
p=2

σ2
pqp−1,kqpl

=
N∑
p=1

σ2
pqpkqpl +

N∑
p=1

σ2
pqp−1,kqp−1,l −

N∑
p=1

σ2
pqpkqp−1,l −

N∑
p=1

σ2
pqp−1,kqpl

=
N∑
p=1

(qpk − qp−1,k) (qpl − qp−1,l)σ
2
p.

Lemma 6.4.4 enables us to write the formula for (R−1AR−1)kl, where A is given by (3.8),

and R is given by (3.16).

Lemma 6.4.5. Suppose the matrix R is given by (3.16), and the matrix A is given by (3.8).

Then for 1 ≤ k ≤ l ≤ N − 1 we have:

(
R−1AR−1

)
kl

=
4(N − k)(N − l)

N2

k∑
p=1

σ2
p −

4k(N − l)
N2

l∑
p=k+1

σ2
p +

4kl

N2

N∑
p=l+1

σ2
p. (6.35)

Proof. Apply Lemma 6.4.4 to Q = R−1, given by (6.32), so that qij = ρij. For p ≤ k, we

get: For p ≤ k we have:

ρpk − ρp−1,k =
2p(N − k)

N
− 2(p− 1)(N − k)

N
=

2(N − k)

N
,

ρpl − ρp−1,l =
2p(N − l)

N
− 2(p− 1)(N − l)

N
=

2(N − l)
N

.

For k < p ≤ l, we have:

ρpk − ρp−1,k =
2k(N − p)

N
− 2k(N − p+ 1)

N
= −2k

N
,

ρpl − ρp−1,l =
2p(N − l)

N
− 2(p− 1)(N − l)

N
=

2(N − l)
N

.

For p > l, we have:

ρpk − ρp−1,k =
2p(N − k)

N
− 2(p− 1)(N − k)

N
=

2(N − k)

N
,
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ρpl − ρp−1,l =
2p(N − l)

N
− 2(p− 1)(N − l)

N
=

2(N − l)
N

.

The rest of the proof is trivial.

6.4.5 Proof of Theorem 6.2.1

Use Theorem 6.3.2 and Corollary 6.3.3 for matrices R and A, given by (3.16) and (3.8)

respectively. We have the following sufficient condition for avoiding total collisions:

tr
(
R−1A

)
− 2 max

1≤k≤l≤N−1

(R−1AR−1)kl
ρkl

≥ 0. (6.36)

For 1 ≤ k ≤ l ≤ N − 1, denote

ck,l(σ) = tr
(
R−1A

)
− 2

(
R−1AR−1

)
kl

ρkl
.

Then we have:

tr
(
R−1A

)
− 2 max

k,l=1,...,N−1

(R−1AR−1)kl
ρkl

= min
1≤k≤l≤N−1

ck,l(σ). (6.37)

Lemma 6.4.6. Using definitions of cl(σ) and σ← from subsection 1.2, we have:

(i) For 2 ≤ k ≤ l ≤ N − 2, we have: ck,l(σ) ≥ 0.

(ii) For 1 = k ≤ l ≤ N − 1, we have: ck,l(σ) = cl(σ).

(iii) For 1 ≤ k ≤ l = N − 1, we have: ck,l(σ) = cN−k (σ←).

Assuming that Lemma 6.4.6 is proved, let us finish the proof of Theorem 6.2.1. Let

δ(σ) := min
2≤k≤l≤N−2

ck,l(σ). (6.38)

If N < 4, let δ(σ) := 0. By Lemma 6.4.6 (i), we always have: δ(σ) ≥ 0. Recall the definition

of P(σ) from (6.1) and use Lemma 6.4.6 (ii), (iii):

min (c1,1(σ), c1,2(σ), . . . , c1,N−1(σ), c2,N−1(σ), . . . , cN−1,N−1(σ)) = P(σ). (6.39)

Comparing (6.37), (6.38) and (6.39), we have:

min
1≤k≤l≤N−1

[
tr
(
R−1A

)
− 2

(R−1AR−1)kl
ρkl

]
= min(P(σ), δ(σ)). (6.40)
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Thus

min
1≤k≤l≤N−1

ck,l(σ) ≥ 0 if and only if P(σ) ≥ 0.

This completes the proof of Theorem 6.2.1.

Proof of Lemma 6.4.6: We can simplify the expression for ck,l(σ). Applying (6.35) and (6.32),

we have: for 1 ≤ k ≤ l ≤ N − 1,(
R−1AR−1

)
kl

ρkl
=

2(N − k)

Nk

k∑
p=1

σ2
p −

2

N

l∑
p=k+1

σ2
p +

2l

N(N − l)

N∑
p=l+1

σ2
p.

Therefore, we have:

ck,l(σ) :=

(
2(N − 1)

N
− 4(N − k)

Nk

) k∑
p=1

σ2
p

+

(
2(N − 1)

N
+

4

N

) l∑
p=k+1

σ2
p +

(
2(N − 1)

N
− 4l

(N − l)N

) N∑
p=l+1

σ2
p

=
2(N − 1)k − 4(N − k)

kN

k∑
p=1

σ2
p +

2(N + 1)

N

l∑
p=k+1

σ2
p

+
2(N − 1)(N − l)− 4l

(N − l)N

M∑
p=l+1

σ2
p.

Now, for k ≥ 2 we get:

2(N − 1)k − 4(N − k) ≥ 4(N − 1)− 4N + 8 = 4 ≥ 0.

Similarly, for l ≤ N − 2 we get:

2(N − 1)(N − l)− 4l ≥ 0.

This proves part (i) of Lemma 6.4.6. Parts (ii) and (iii) are now straightforward. �

6.4.6 Proof of Theorem 6.2.3

Fix a subset I ⊆ {1, . . . , N −1} such that J ⊆ I. Take the matrices R and A given by (3.16)

and (3.8). Essentially, we need to prove the following lemma:
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Lemma 6.4.7. If the subset I satisfies Assumption (B), then the process Z = (Z(t), t ≥

0) = SRBM|I| ([R]I , 0, [A]I) a.s. does not hit the origin at any time t > 0.

If we prove Lemma 6.4.7, then Theorem 6.2.3 will automatically follow from this lemma

and Theorem 6.3.4. The rest of this subsection is devoted to the proof of Lemma 6.4.7.

Let us investigate the structure of the matrices [R]−1
I and [A]−1

I . Split I into disjoint non-

adjacent discrete intervals: I = I1∪ I2∪ . . .∪ Ir. Since the matrices R and A are tridiagonal,

the matrices [R]I and [A]I have the following block-diagonal form:

[R]I = diag ([R]I1 , . . . , [R]Ir) , [A]I = diag ([A]I1 , . . . , [A]Ir) .

So the processes

[Z]Ij = ([Z(t)]Ij , t ≥ 0), j = 1, . . . , s, (6.41)

are independent SRBMs:

[Z]Ij = SRBM|Ij |
(
[R]Ij , 0, [A]Ij

)
.

And for any subset

I ′ = Ii1 ∪ . . . ∪ Iis

the process

[Z]I′ = ([Z(t)]I′ , t ≥ 0) = SRBM|I
′| ([R]I′ , 0, [A]I′) .

Remark 21. If for some choice of I ′ this process a.s. does not hit the origin of R|I
′|

+ at any

time t > 0, then the original process Z a.s. does not hit the origin at any time t > 0, because

of independence of (6.41).

Now, let us state three lemmas.

Lemma 6.4.8. If at least two of the discrete intervals I1, . . . , Ir are singletons, then Z a.s.

at any time t > 0 does not hit the origin.

Lemma 6.4.9. If at least one I1, . . . , Ir is a two-element subset {k−1, k} with local concavity

at k, then Z a.s. at any time t > 0 does not hit the origin.
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Lemma 6.4.10. If I satisfies Assumption (A), then Z a.s. at any time t > 0 does not hit

the origin.

Combining Lemmas 6.4.8, 6.4.9, and 6.4.10 with Remark 21, we complete the proof of

Lemma 6.4.7 and Theorem 6.2.3.

In the remainder of this subsection, we shall prove these three lemmas.

Proof of Lemma 6.4.8: Without loss of generality, suppose I1 = {k} and I2 = {l} are

singletons. Since they are not adjacent, |k − l| ≥ 2; assume that k < l, so l ≥ k + 2. Then

(Zk, Zl)
′ = SRBM2 ([R]I1∪I2 , 0, [A]I1∪I2) .

But

[A]I1∪I2 =

σ2
k + σ2

k+1 0

0 σ2
l + σ2

l+1

 , [R]I1∪I2 = I2.

So Zk and Zl are independent reflected Brownian motions on R+. They do not hit zero

simultaneously, which is the same as to say that (Zk, Zl)
′ does not hit the origin in R2

+.

Proof of Lemma 6.4.9: Follows from Remark 19 and Proposition 5.1.1.

Proof of Lemma 6.4.10: By Lemma 2.2.1 from Chapter 4, which corresponds to [100, Lemma

5.6], the matrices [R]I1 , . . . , [R]Ir are themselves reflection nonsingular M-matrices, so they

are invertible, and

[R]−1 = diag
(
[R]−1

I1
, . . . , [R]−1

Ir

)
.

In addition,

[R]−1
I [A]−1

I = diag
(
[R]−1

I1
[A]I1 , . . . , [R]−1

Ir
[A]Ir

)
, (6.42)

[R]−1
I [A]−1

I [R]−1
I = diag

(
[R]−1

I1
[A]I1 [R]−1

I1
, . . . , [R]−1

Ir
[A]Ir [R]−1

Ir

)
.

Lemma 6.4.11. For the matrices R and A given by (3.16) and (3.8), we have:

tr
(
[R]−1

I [A]−1
I

)
=

r∑
j=1

T (Ij). (6.43)
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Proof. Because of (6.42), we get:

tr
(
[R]−1

I [A]−1
I

)
=

r∑
j=1

tr
(
[R]−1

Ij
[A]Ij

)
. (6.44)

Applying Lemma 6.4.3 with Ij instead of {1, . . . , N − 1} and Ij instead of {1, . . . , N}, j =

1, . . . , r, we have:

tr
(
[R]−1

Ij
[A]Ij

)
=

r∑
j=1

T (Ij), j = 1, . . . , r. (6.45)

Combining (6.44) and (6.45), we get (6.43).

Lemma 6.4.12. We have the following estimate:

max
x∈R|I|+ \{0}

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

≤ max
j=1,...,r

max
k,l∈Ij
k≤l

(
[R]−1

Ij
[A]Ij [R]−1

Ij

)
kl(

[R]−1
Ij

)
kl

. (6.46)

The proof of Lemma 6.4.12 is postponed until the end of this section. Assuming we have

proved it, let us show how to finish the proof of Lemma 6.4.10.

Using (6.46) and (6.43), we can rewrite the condition (6.31) as

r∑
j=1

T (Ij)− 2 max
i=1,...,r

max
k,l∈Ii
k≤l

(
[R]−1

Ii
[A]−1

Ii
[R]−1

Ii

)
kl(

[R]−1
Ii

)
kl

≥ 0.

Equivalently,

r∑
j=1
j 6=i

T (Ij) + T (I i)− 2 max
k,l∈Ii
k≤l

(
[R]−1

Ii
[A]−1

Ii
[R]−1

Ii

)
kl(

[R]−1
Ii

)
kl

≥ 0, i = 1, . . . , r.

In the proof of Theorem 6.2.1, see (6.40) and (6.34), it was shown that for i = 1, . . . , r, we

have:

T (I i)− 2 max
k,l∈Ii
k≤l

(
[R]−1

Ii
[A]−1

Ii
[R]−1

Ii

)
kl(

[R]−1
Ii

)
kl

= min(P(I i), δi), δi := δ([σ]Ii) ≥ 0.

Therefore, the condition (6.31) is equivalent to∑
j 6=i

T (Ij) + min(P(I i), δi) ≥ 0, i = 1, . . . , r. (6.47)
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It suffices to note that T (I i) > 0 for all i. Therefore, the condition (6.47), in turn, is

equivalent to ∑
j 6=i

T (Ij) + P(I i) ≥ 0, i = 1, . . . , r.

This completes the proof of Lemma 6.4.10, and with it the proofs of Lemma 6.4.7 and

Theorem 6.2.3.

Proof of Lemma 6.4.12. The matrices [R]−1
I and [A]−1

I are block-diagonal, with the blocks

corresponding to the sets I1, . . . , Ir of indices. Therefore,

x′[R]−1
I [A]I [R]−1

I x =
r∑
j=1

[x]′Ij [R]−1
Ij

[A]Ij [R]−1
Ij

[x]Ij , x′[R]−1
I x =

r∑
j=1

[x]′Ij [R]−1
Ij

[x]Ij . (6.48)

Let Q(x) := {j = 1, . . . , r | [x]Ij 6= 0}. We might as well rewrite (6.48) as

x′[R]−1
I [A]I [R]−1

I x =
∑
j∈Q(x)

[x]′Ij [R]−1
Ij

[A]Ij [R]−1
Ij

[x]Ij , x′[R]−1
I x =

∑
j∈Q(x)

[x]′Ij [R]−1
Ij

[x]Ij .

For j ∈ Q(x), we have: [x]Ij ∈ S
|Ij |
+ \ {0}. The matrix [R]Ij has the same form as R

in (3.16), but with smaller size. So all elements of the inverse matrix [R]−1
Ii

(just like for

R−1) are positive. Therefore, [x]′Ii [R]−1
Ii

[x]Ii > 0, i = 1, . . . , r. Applying Lemma 6.7.1 to

ai = [x]′Ii [R]−1
Ii

[A]Ii [R]−1
Ii

[x]Ii and bi = [x]′Ii [R]−1
Ii

[x]Ii > 0 for i ∈ Q(x), we get:

x′[R]−1
I [A]I [R]−1

I x

x′[R]−1
I x

≤ max
j∈Q(x)

[x]′Ij [R]−1
Ij

[A]Ij [R]−1
Ij

[x]Ij

[x]′Ij [R]−1
Ij

[x]Ij
. (6.49)

But the matrix [R]Ij , as just mentioned, has all elements positive. Applying Lemma 6.3.3,

we have for y ∈ R|Ij |+ \ {0}:

y′[R]−1
Ij

[A]Ij [R]−1
Ij
y

y′[R]−1
Ij
y

≤ max
k,l∈Ij
k≤l

(
[R]−1

Ij
[A]Ij [R]−1

Ij

)
kl(

[R]−1
Ij

)
kl

. (6.50)

Combining (6.49) and (6.50), we get (6.46). �
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6.5 Proof of Theorem 6.2.2

Recall the setting of Theorem 6.3.2: we have a process Z = (Z(t), t ≥ 0) in Rd
+, which is an

SRBMd(R, µ,A) with a reflection nonsingular M-matrix R. We would like this process to

avoid the corner {0}.

A careful reading of the proof of Theorem 6.3.2 shows the following: Replace the matrix

R−1 in the formula for F (Z(t)) by a matrix Q. To guarantee that the process F (Z(t)) =

Z(t)′QZ(t) avoids the origin, we need the following conditions to hold:

z′Qz > 0, for all z ∈ Rd
+; (6.51)

(QR)i,j ≥ 0, if i 6= j; (6.52)

tr(QA) ≥ 2 max
x∈Rd

+\{0}

x′QAQx

x′Qx
. (6.53)

The first condition guarantees that F (Z(t)) = 0 is equivalent to Z(t) = 0. The third

condition is needed to get the correct drift when comparing the time-changed process F (Z(·))

to a Bessel process. The only change being made to this proof is (6.52). This condition

guarantees that the terms corresponding to the regulating processes for the process F (Z(·))

are all nonnegative. In the proof of Theorem 6.3.2, the matrix Q = R−1 is chosen to make

the inequality be an equality (and so the regulating processes go away). But if they are

nondecreasing, this can only help the process F (Z(·)) avoid hitting zero. So Q = R−1 is

only one of many possible choices. And here, we make a different choice for the matrix

Q. Remember that (subsection 4.2) in this particular case the SRBM Z = (Z(t), t ≥ 0) is

actually the gap process for the system of N = 4 competing Brownian particles. So we have:

d = N − 1 = 3, and

R =


1 −1/2 0

−1/2 1 −1/2

0 −1/2 1

 , A =


σ2

1 + σ2
2 −σ2

2 0

−σ2
2 σ2

2 + σ2
3 −σ2

3

0 −σ2
3 σ2

3 + σ2
4
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We pick the following matrix:

Q =


1 1 1

1 λ 1

1 1 1

 , where λ =
σ2

1 + σ2
2 + σ2

3 + σ2
4

σ2
2 + σ2

3

. (6.54)

Since every entry in Q is positive, the condition (6.51) is easily satisfied. One can also confirm

the relation QAQ = tr(QA)
2

Q, and so (6.53) is satisfied. Finally, calculations show that

QR =


1
2

0 1
2

1− λ
2

λ− 1 1− λ
2

1
2

0 1
2

 , (6.55)

and so (6.52) is equivalent to

1− λ

2
≥ 0 ⇐⇒ λ ≤ 2 ⇐⇒ σ2

2 + σ2
3 ≥ σ2

1 + σ2
4.

6.6 The Case of Asymmetric Collisions

We can define collisions and multicollisions similarly to the classical case, as in Definition 29.

It was shown in [71], see also Chapter 3, that the gap process for systems with asymmetric

collisions, much like for the classical case, is an SRBM. Namely, it is an SRBMN−1(R, µ,A),

where µ and A are given by (3.9) and (3.8), and the reflection matrix R is given by

R =



1 −q−2 0 0 . . . 0 0

−q+
2 1 −q−3 0 . . . 0 0

0 −q+
3 1 −q−4 . . . 0 0

...
...

...
...

. . .
...

...

0 0 0 0 . . . 1 −q−N−1

0 0 0 0 . . . −q+
N−1 1


(6.56)

The connection between multicollisions and multiple collisions in this system and hitting of

edges of RN−1
+ by the gap process is the same as in Lemma 6.4.1. This allows us to apply
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Theorem (6.3.2) and Theorem (6.3.4) to find sufficient conditions for avoiding multicollisions

of a given pattern. In particular, the results of Lemma 6.4.2 are still valid for system with

asymmetric collisions: the property of a.s. avoiding multicollisions of a certain pattern

depends only on the diffusion coefficients and parameters of collision.

A remark is in order: the matrix R in (6.56) in general is not symmetric, as opposed to

the matrix R in (3.16). But if we take the (N − 1)× (N − 1) diagonal matrix

C = diag

(
1,
q+

2

q−2
,
q+

2 q
+
3

q−2 q
−
3

, . . . ,
q+

2 q
+
3 . . . q

+
N−1

q−2 q
−
3 . . . q

−
N−1

)
,

then the matrix R = RC is diagonal.

6.7 Appendix

6.7.1 Proof of Lemma 6.3.1

By [103, Lemma 2.1], the matrix R−1 has all elements nonnegative, and its diagonal elements

are strictly positive. The same is true for the matrix R−1 = C−1R−1 = (ρij)1≤i,j≤d. If

x ∈ S \ {0}, then all components of x are nonnegative with at least one component strictly

positive, and so

x′R−1x =
d∑
i=1

d∑
j=1

ρijxixj ≥
d∑
i=1

ρiix
2
i > 0.

In addition, R−1 is a nonsingular matrix, and x 6= 0, so R−1x 6= 0. Since A is positive

definite, we have:

x′R−1AR−1x = (R−1x)′A(R−1x) > 0.

Therefore, the function

f(x) :=
x′R−1AR−1x

x′R−1x

is well-defined and strictly positive on S \ {0}. In addition, it is homogeneous, in the sense

that for x ∈ S \ {0} and k > 0 we have: f(kx) = f(x). Therefore,

{f(x) | x ∈ S \ {0}} = {f(x) | x ∈ S, ‖x‖ = 1}.
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The set {x ∈ S | ‖x‖ = 1} is compact, and f is continuous and positive on this set. Therefore,

it is bounded on this set (and so on S \ {0}), and reaches its maximal and minimal values,

both of which are strictly positive.

6.7.2 Proof of Lemma 6.3.3

Let us prove the statement for the maximum. For the minimum, the proof is similar. For

x ∈ S \ {0}, we have: x1, . . . , xd ≥ 0, and so

x′R−1AR−1x

x′R−1x
=

∑d
i=1

∑d
j=1(R−1AR−1)ijxixj∑d
i=1

∑d
j=1 ρijxixj

.

Apply Lemma 6.7.1 to s = d2, aij = (R−1AR−1)ijxixj, bij = ρijxixj (we index ai and bi by

double indices, with each of the two indices ranging from 1 to d). It suffices to note that,

because of the symmetry of R−1AR−1 and R−1 = (ρij), we have:

max
i,j=1,...,d

(R−1AR−1)ij
ρij

= max
1≤i≤j≤d

(R−1AR−1)ij
ρij

.

6.7.3 A technical lemma

Lemma 6.7.1. Take real numbers a1, . . . , as and positive real numbers b1, . . . , bs. Then

min

(
a1

b1

, . . . ,
as
bs

)
≤ a1 + . . .+ as
b1 + . . .+ bs

≤ max

(
a1

b1

, . . . ,
as
bs

)
.

Proof. Let us prove the inequality

a1 + . . .+ as
b1 + . . .+ bs

≤ max

(
a1

b1

, . . . ,
as
bs

)
.

The other inequality is proved similarly. Assume the converse: that

a1 + . . .+ as
b1 + . . .+ bs

>
ai
bi
, i = 1, . . . , s.

Multiply the ith inequality by (b1 + . . . + bs)bi > 0: (a1 + . . . + as)bi > ai(b1 + . . . + bs) for

i = 1, . . . , s. Add them up and arrive at a contradiction.
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Chapter 7

INFINITE SYSTEMS

7.1 Introduction

In this chapter, which corresponds to the author’s paper [101], we prove Theorem 1.4.1 for

the infinite Atlas model, together with similar results for more general infinite systems. In

these systems, the kth ranked particle moves as a Brownian motion with drift gk and diffusion

σ2
k (where gk, σ

2
k are fixed parameters) for each k = 1, 2, . . ., see Definition 20. These are

called infinite classical systems of competing Brownian particles, see [105], [59].

We devote Section 7.2 to the questions of existence and uniqueness results for these infinite

classical systems, see Proposition 7.2.1. In fact, these statements were already proved in [105]

and [59], but we provide a full proof here for the sake of completeness. The infinite Atlas

model is a particular case of this general model, when

g1 = 1, g2 = g3 = . . . = 0, σ1 = σ2 = . . . = 1.

In Section 7.3, Definition 32, we introduce a generalization of such systems: infinite systems

with asymmetric collisions, with parameters of collisions (q±k )k≥1. This means, so to speak,

that ranked particles Yk, k = 1, 2, . . ., have “different mass”, and when they collide, they fly

apart with “different speed”. Finite systems with asymmetric collisions were already defined

in [71], see also Chapter 3 of the current thesis.

Section 7.4 is devoted to the gap process Z = (Z(t), t ≥ 0): stationary distributions and

weak convergence as t → ∞. In subsection 7.4.1, Theorem 7.4.3, we construct a stationary

distribution π for the gap process of an infinite system, as a limit of stationary distributions

for finite systems. For the infinite Atlas model, this distribution π is none other than π∞.

By the way, this provides a simplified proof of the main result of [89]: that π∞ is a stationary
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distribution for the gap process of the infinite Atlas model. But we do this for the general

case of an infinite system with asymmetric collisions. In subsection 7.4.2, we elaborate on

results of subsection 7.4.1. We consider the case when this stationary distribution π is of

product-of-exponentials form (the so-called skew-symmetry condition).

In subsection 7.4.3, we consider weak convergence of the gap process Z(t) as t → ∞.

We prove Theorem 7.4.5, which is essentially the same as Theorem 1.4.1, but for the general

case instead of the infinite Atlas model. Theorem 1.4.1 turns out to be a straightforward

corollary of Theorem 7.4.5.

In Section 7.5, we prove results about a.s. absence of triple and simultaneous collisions,

continuing the work done in Chapter 5 (which corresponds to the author’s paper [103]). The

results for infinite systems turn out to be very similar to that for finite systems. Section

7.6 is devoted to proofs of some results from the paper. Section 7.7 (Appendix) contains a

statement and a proof of some technical lemmata.

7.2 Infinite Classical Systems of Competing Brownian Particles

The following existence and uniqueness theorem was proved in [59] and [105]. We restate it

here in a slightly different form and prove, combining the proofs from these two articles. For

the sake of completeness, we include the whole proof in this thesis, although in the article

[101] we have only part of this proof.

Proposition 7.2.1. Suppose x ∈ R∞ is a rankable vector which satisfies the following con-

dition:

lim
n→∞

xn =∞, and
∞∑
n=1

e−αx
2
n <∞ for all α > 0. (7.1)

Assume also that there exists n0 ≥ 1 for which

gn0+1 = gn0+2 = . . . = g, and σn0+1 = σn0+2 = . . . = σ > 0.

Then, in a weak sense there exists an infinite classical system of competing Brownian particles

with drift coefficients (gk)k≥1 and diffusion coefficients (σ2
k)k≥1, starting from x, and it is

unique in law.
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Proof. Without loss of generality, assume x1 ≤ x2 ≤ . . . Construction of this system goes as

follows: for every N ≥ n0 and x ∈ RN , take a probability space

(
Ω(N,x),F (N,x),P(N,x)

)
with a classical system

X(N,x) =
(
X

(N,x)
1 , . . . , X

(N,x)
N

)′
of N competing Brownian particles, with drift coefficients (gn)1≤n≤N and diffusion coeffi-

cients (σ2
n)1≤n≤N , starting from X(N,x)(0) = x, and with a sequence B

(N,x)
1 , B

(N,x)
2 , . . . of i.i.d.

standard Brownian motions, independent of the system X(N,x). Now, consider the product

(Ω,F ,P) of all these probability spaces.

Define the infinite system X recursively. First,

N0 := n0, τ0 := 0, X(0) = x.

Next, for every m = 0, 1, . . ., as t ≤ τm+1 − τm, we define: xm := (X1(τm), . . . , XNm(τm))′,

and

Xi (t+ τm) =

Xi(τm) + gt+ σWi(t), i > Nm;

X
(Nm,xm)
i (t), i = 1, . . . , Nm.

Here,

τm+1 := inf{t ≥ τm | ∃ i > Nm, j = 1, . . . , n0 : Xi(t) = Xj(t)},

and

Nm+1 := max{i > Nm | ∃ j = 1, . . . , n0 : Xi (τm+1) = Xj (τm+1)}.

Let us explain the method of construction in words. All particles, except the lowest n0

ranked ones, move as Brownian motions with drift g and diffusion σ2. Initially, we define the

infinite system by splitting it into two parts. The first part is the bottom n0 particles (which

coincide with the particles X1, . . . , Xn0 , because at time t = 0, ranks coincide with names).

They move as a finite classical system of n0 competing Brownian particles. The second part
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of this infinite system consists of countably many independent Brownian motions, starting

from xi, i > n0, each having drift g and diffusion σ2.

The particles follow this dynamics until some particle from the second part collides with

some particle with the first part. Let us call this moment τ1. Then we add this particle (and

all other particles from the second part hit by some particles from the first part, if there is

more than one collision at this moment τ1) to the first part, which becomes bigger. Let N1

be the largest name of a particle in the updated first part. Then we add all particles with

names less than or equal to N1 to the first part of the infinite system, even if they have not

hit one of the particles X1, . . . , Xn0 .

Starting from the moment τ1, we define the updated first part to be a finite classical

system of competing Brownian particles, and the updated second part to be again just

independent Brownian motions. Particles follow this dynamics until there is another collision

between two particles: one from the first part and one from the second part. We call this

moment τ2 and update the parts of the system again. Then we repeat the process.

Suppose that we have proved the following statements.

Lemma 7.2.2. For every m = 1, 2, . . . we have: Nm <∞ a.s.

Lemma 7.2.3. As m→∞, we have: τm →∞ a.s.

Let us show that the process X is, in fact, an infinite classical system of competing

Brownian particles with drift coefficients (gn)n≥1 and diffusion coefficients (σ2
n)n≥1, starting

from X(0) = x.

One can describe the behavior of the infinite classical system as consisting of the bottom

n0 particles, which have drift coefficients (gn)1≤n≤n0 and diffusion coefficients (σ2
n)1≤n≤n0 , and

all other particles, which have drift coefficient g and diffusion coefficient σ2. As long as a

particle from the second group does not hit a particle from the first group, it behaves as a

Brownian motion with drift g and diffusion σ2, without interacting with other particles from

the second group. As it hits one of those “exceptional ” bottom n0 particles, however, it

needs to be “integrated” into a finite system of competing Brownian particles. We can carry
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out the construction so that this “integration” occurs before this moment, but not after.

It suffices to show that this is the case for our construction: that each of the “upper”

particles is “integrated” before or at least at the moment of hitting one of the lowest-ranked

n0 particles. Indeed, assume

Xi(t) = Xpt(j)(t) for some i > n0, j = 1, . . . , n0.

We claim that then there exists s ∈ [0, t] and l = 1, . . . , j such that Xi(s) = Xl(s). Indeed,

the quantity of k such that Xk(t) < Xi(t) is less than j (this follows from the definition

of rank). So there exists l = 1, . . . , j such that Xl(0) ≤ Xi(0), but Xl(t) > Xi(t). Using

continuity of Xl and Xi, we complete the proof.

Now, let us show uniqueness in law of the system X: it holds until every moment τm,

and since τm →∞, it holds on the whole infinite time horizon.

Proof of Lemma 7.2.2. Assume the converse: that Nj =∞ for some j. Denote this event

by A∞. Since the sequence (Nm)m≥0 is strictly increasing, there exists m such that Nm <∞,

but Nm+1 =∞. Therefore,

A∞ =
∞⋃
m=0

∞⋃
M=0

A(M,m), where A(M,m) := {Nm = M, Nm+1 =∞}. (7.2)

Assume the event A(M,m) has happened. Then τm+1 <∞. The fact that Nm+1 =∞ means

that Xi (τm+1) is the same for infinitely many values of i; in particular, for infinitely many

values of i > n0. But for i > M = Nm, the processes Xi behave as Brownian motions with

drift g and diffusion σ2, starting from Xi(0) = xi, at least until τm+1. Among these Brownian

motions, there exist three: Xi1 , Xi2 , Xi3 , which start from different xi (because xi → ∞ as

i→∞). Therefore, the event

A(M,m, i1, i2, i3) := A(M,m) ∩ {Xi1 (τm+1) = Xi2 (τm+1) = Xi3 (τm+1)}

has probability zero. But

A(M,m) =
⋃

i1,i2,i3

A(M,m, i1, i2, i3),
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where the union is taken over all i1, i2, i3 > M such that xi1 , xi2 , xi3 are all different. This is

a countable union, so P(A(M,m)) = 0. Thus, from (7.2) we have: P(A∞) = 0.

Proof of Lemma 7.2.3. Fix T > 0. It suffices to show that

lim
m→∞

P(τm ≤ T ) = 0.

Fix m ≥ 1 and assume the event {τm ≤ T} has happened. Note that, until the moment τm,

the first Nm components (X1, . . . , XNm)′ of the system X behave as a finite classical system

X̃(t) =
(
X̃1(t), . . . , X̃Nm(t)

)′
of Nm competing Brownian particles:(

(X1(t), . . . , XNm(t))′ , 0 ≤ t ≤ τm
)

=

((
X̃1(t), . . . , X̃Nm(t)

)′
, 0 ≤ t ≤ τm

)
.

Therefore,

max
0≤t≤τm

max
1≤i≤n0

Xi(t) ≤ max
0≤t≤T

max
1≤i≤n0

X̃i(t) <∞.

Fix ε > 0. Take a threshold uε ∈ R such that

P

(
max

0≤t≤T
max

1≤i≤n0

X̃i(t) > uε

)
< ε.

Note that this uε does not depend on m. Now, each Xi for i > Nm behaves as a Brow-

nian motion with drift g and diffusion σ2, starting from xi, at least until the moment τm.

Therefore, for some standard Brownian motion B̃i we have:

Xi(t) = xi + gt+ σB̃i(t), t ≤ τm.

Suppose we proved that
∞∑

i>Nm

P

(
min

0≤t≤T
Xi(t) < uε

)
<∞. (7.3)

Applying the Borel-Cantelli lemma, we get: there are a.s. only finitely many i > Nm such

that

min
0≤t≤τm

Xi(t) < uε.
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There exists Mε such that the number of these i ≥ 1 is greater than Mε only with probability

≤ ε. And this Mε is independent of m: it depends only on T and ε. So with probability

≥ 1− 2ε, there does not exist i > Mε and j = 1, . . . , n0 such that

Xi(τm) = Xj(τm).

If this event happened, then Nm ≤ Mε. From construction of (Nj)j≥0 we know that Nj ≥

Nj−1 + 1 for all j, and so Nm ≥ N0 +m = n0 +m. Therefore,

P(m ≤Mε − n0) > 1− 2ε.

If we fix ε > 0 and take mε := Mε − n0 + 1, then

P (τmε > T ) > 1− 2ε.

Since ε > 0 is arbitrarily small, this completes the proof.

Now, let us show (7.3). Indeed,{
min

0≤t≤T
Xi(t) < uε

}
⊆
{
xi − (gT )− + σ min

0≤t≤T
B̃i(t) < uε

}
⊆
{
σ min

0≤t≤T
B̃i(t) < uε − xi + (gT )−

}
,

and the sum in (7.3) can be estimated as

∞∑
i>Nm

P

(
σ min

0≤t≤T
B̃i(t) < uε − xi + (gT )−

)
=

∞∑
i>Nm

2P
(
σB̃i(T ) > xi − uε − (gT )−

)
= 2

∞∑
i>Nm

Ψ

(
xi − uε − (gT )−

σ
√
T

)
.

Using Lemma 7.7.1, we conclude that the latter sum is finite.

Let us state a few properties of this infinite classical system of competing Brownian

particles. They were already stated and proved in [105] and [59], but we include the proof

for the sake of completeness.

Proposition 7.2.4. Under conditions of Proposition 7.2.1, we have:
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(i) For every T > 0 and u ∈ R there are a.s. only finitely many particles Xi such that

min
0≤t≤T

Xi(t) < u.

(ii) Moreover, for every α > 0 we have:

∞∑
i=1

e−αX
2
i (t) <∞.

(iii) The dynamics of the ranked particles Yk is as follows. Denote by

L(k,k+1) = (L(k,k+1)(t), t ≥ 0)

the local time process at zero of Zk, k = 1, 2, . . .. For notational convenience, let L(0,1)(t) ≡ 0.

Let

Bk(t) =
∞∑
i=1

∫ t

0

1(ps(k) = i)dWi(s), k = 1, 2, . . . , t ≥ 0.

Then the processes Bk = (Bk(t), t ≥ 0), k = 1, 2, . . . are i.i.d. standard Brownian motions.

We have:

Yk(t) = Yk(0) + gkt+ σkBk(t)−
1

2
L(k,k+1)(t) +

1

2
L(k−1,k)(t), t ≥ 0, k = 1, 2, . . . . (7.4)

Proof. (i) We can write Xi(t) in the form of

Xi(t) = yi +

∫ t

0

βi(s)ds+

∫ t

0

ρi(s)ds, (7.5)

where

βi(t) :=
∞∑
k=1

1(Xi has rank k at time t)gk, ρi(t) :=
∞∑
k=1

1(Xi has rank k at time t)σk.

Because of (7.8), we get:

|βi(t)| ≤ g, |ρi(t)| ≤ σ, t ≥ 0.

Therefore,

Xi(t) ≥ yi − gT +Mi(t), where Mi(t) :=

∫ t

0

ρi(s)dWi(s)
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is a continuous square-integrable martingale with quadratic variation

〈Mi〉t =

∫ t

0

ρ2
i (s)ds ≤ s2T, t ∈ [0, T ].

Let us make a time-change: for some standard Brownian motion Bi = (Bi(s), s ≥ 0), we

have:

Mi(t) = Bi (〈Mi〉t) .

So

min
0≤t≤T

Xi(t) ≥ yi − (gT )+ + min
[0,σ2T ]

Bi(s).

Therefore,

P

(
min

0≤t≤T
Xi(t) < u

)
≤ P

(
min

0≤t≤σ2T
Bi(t) < u− yi + (gT )+

)
= P

(
max

0≤t≤σ2T
Bi(t) > −u+ yi − (gT )+

)
= 2P

(
Bi(σ

2T ) > −u+ yi − (gT )+

)
= 2Ψ

(
−u+ yi − (gT )+

σ
√
T

)
.

By Lemma 7.7.1, the sum of the terms on the right is finite. By the Borel-Cantelli lemma,

(i) is proved.

(ii) We use the representation (7.5). Let us show that

∞∑
i=1

P

(
min

0≤t≤σ2T
Bi(t) < −

1

2
yi

)
<∞. (7.6)

Indeed,

P

(
min

0≤t≤σ2T
Bi(t) < −

1

2
yi

)
= P

(
max

0≤t≤σ2T
Bi(t) >

1

2
yi

)
= Ψ

(
yi/2

σ
√
T

)
.

Then it suffices to apply Lemma 7.7.1. Now, (7.6) means that (applying the Borel-Cantelli

lemma), for all but finitely many i ≥ 1 such that

min
0≤t≤σ2T

Bi(t) ≥ −
1

2
yi.

Therefore, for these (all but finitely many) i ≥ 1

yi + (gT )− + min
0≤t≤σ2T

Bi(t) ≥
1

2
yi + (gT )+. (7.7)
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By Lemma 7.7.1, for all α > 0,

∞∑
i=i0

e−α((1/2)yi+(gT )+)2 <∞.

This completes the proof of (ii).

(iii) This statement follows from (i) and similar statement for finite systems (see (3.2)).

Indeed, take the kth ranked particle Yk and let u := max[0,T ] Yk + 1. Let us show that for

every t ∈ [0, T ] there exists a neighborhood of t in [0, T ] (possibly random) such that (7.4)

holds. The statement of (iii) would then follow from compactness of [0, T ] and the fact that

T > 0 is arbitrary.

Indeed, there exists i0 such that min[0,T ] Xi > u for i > i0. Take m > k and assume the

event {i0 ≤ m} happened. Fix time t ∈ [0, T ]. We claim that if Yk does not collide at time

t with other particles, then there exists a (random) neighborhood when Yk does not collide

with other particles. Indeed, particles Xi, i > m, cannot collide with Yk, by definition of

u and i0. And for every particle Xi, i = 1, . . . ,m, other than Yk (say Yk has name j at

time t), there exists an open neighborhood of t such that this particle does not collide with

Yk = Xj in this neighborhood. Take the finite intersection of these m−1 neighborhoods and

complete the proof of the claim.

In this case, the formula 7.4 is trivial, because the local time terms L(k−1,k) and L(k,k+1)

are constant in this neighborhood.

Now, if Yk(t) does collide with particles Xi, i ∈ I, then I ⊆ {1, . . . ,m}. We claim that

there exists a neighborhood of t such that, in this neighborhood, particles Xi, i ∈ I, do not

collide with any other particles. Indeed, for every i ∈ I, we have: Xi(t) = Yk(t) ≤ u − 1.

There exists a neighborhood of t in which Xi does not collide with any particles Xl, l ∈

{1, . . . ,m} \ I. There exists another neighborhood in which Xi(t) < u (and therefore it does

not collide with any particles Xl, l > m). Intersect all these neighborhoods (there are 2|I|

of them) and complete the proof of this claim.

In this neighborhood, the system (Xi, i ∈ I) behaves as a finite system of competing

Brownian particles. It suffices to refer to (3.2).
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7.3 Infinite Systems with Asymmetric Collisions

Proposition 7.2.4 provides motivation to introduce infinite systems of competing Brownian

particles with asymmetric collisions, when we have coefficients other than 1/2 at the local

times in (7.4). We prove an existence theorem for these systems. Unfortunately, we could

not prove uniqueness: we just construct a copy of an infinite ranked system using approxi-

mation by finite ranked systems. This copy is called an approximative version of the infinite

ranked system. We also develop comparison techniques for infinite systems, which parallel

similar techniques for finite systems from Chapter 4. Finally, we show that if we take a

infinite classical system and rank it, the resulting infinite ranked system will, in fact, be the

approximative version. This allows us to use the results of this chapter not only for infinite

ranked systems, but also for infinite classical systems.

7.3.1 Existence result and some properties

First, we state a formal definition of an infinite ranked system of competing Brownian par-

ticles.

Definition 32. Fix parameters g1, g2, . . . ∈ R, σ1, σ2, . . . > 0 and (q±n )n≥1 such that

q+
n+1 + q−n = 1, 0 < q±n < 1, n = 1, 2, . . .

Consider an R∞-valued process Y = (Y (t), t ≥ 0) with continuous adapted components and

continuous adapted real-valued processes L(k,k+1) = (L(k,k+1)(t), t ≥ 0), k = 1, 2, . . . (for

convenience, let L(0,1) ≡ 0), with the following properties:

(i) Y1(t) ≤ Y2(t) ≤ Y3(t) ≤ . . . for t ≥ 0;

(ii) for i.i.d. standard (Ft)t≥0-Brownian motions B1, B2, . . ., we have:

Yk(t) = Yk(0) + gkt+ σkBk(t) + q+
k L(k−1,k)(t)− q−k L(k,k+1)(t), k = 1, 2, . . . , t ≥ 0;

(iii) each process L(k,k+1) is nondecreasing, L(k,k+1)(0) = 0 and∫ ∞
0

(Yk+1(t)− Yk(t)) dL(k,k+1)(t) = 0, k = 1, 2, . . .
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The last equation means that L(k,k+1) can increase only when Yk(t) = Yk+1(t).

Then the process Y is called an infinite ranked system of competing Brownian particles

with drift coefficients (gk)k≥1, diffusion coefficients (σ2
k)k≥1, and parameters of collisions

(q±k )k≥1. The process Yk = (Yk(t), t ≥ 0) is called the kth ranked particle. The R∞+ -valued

process Z = (Z(t), t ≥ 0), Z(t) = (Zk(t))k≥1, defined by

Zk(t) = Yk+1(t)− Yk(t), k = 1, 2, . . . , t ≥ 0,

is called the gap process. The process L(k,k+1) is called the local time of collision between

Yk and Yk+1. If Y (0) = y, then we say that this system Y starts from y. The processes

B1, B2, . . . are called driving Brownian motions.

We can reformulate Proposition 7.2.4 (ii) as follows: take an infinite classical system

X = (Xi)i≥1 of competing Brownian particles with drift coefficients (gn)n≥1 and diffusion

coefficients (σ2
n)n≥1. Rank it: in other words, switch from named particles Xi, i ≥ 1, to

ranked particles Yk, k ≥ 1. The resulting system Y = (Yk)k≥1 is an infinite ranked system

of competing Brownian particles with drift coefficients (gn)n≥1, diffusion coefficients (σ2
n)n≥1,

and parameters of collision

q±n = 1/2, n ≥ 1.

In this chapter, we construct this infinite system by approximating it with finite systems

of competing Brownian particles with the same parameters.

Definition 33. Using the notation from Definition 32, for every N ≥ 2, let

Y (N) =
(
Y

(N)
1 , . . . , Y

(N)
N

)′
be the system of N ranked competing Brownian particles with drift coefficients g1, . . . , gN ,

diffusion coefficients σ2
1, . . . , σ

2
N and parameters of collision (q±n )1≤n≤N , driven by Brownian

motions B1, . . . , BN . Suppose there exist limits

lim
N→∞

Y
(N)
k (t) =: Yk(t),
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which are uniform on every [0, T ], for every k = 1, 2, . . ., and Y = (Y1, Y2, . . .)
′ turns out

to be an infinite system of competing Brownian particles with parameters (gn)n≥1, (σ2
n)n≥1,

(q±n )n≥1. Then we say that Y is an approximative version of this system.

The main result of this section is as follows.

Theorem 7.3.1. Take a sequence of drift coefficients (gn)n≥1, a sequence of diffusion coef-

ficients (σ2
n)n≥1, and a sequence of parameters of collision (q±n )n≥1. Suppose that the initial

conditions y ∈ R∞ are such that y1 ≤ y2 ≤ . . ., and

∞∑
n=1

e−αy
2
n <∞ for all α > 0.

Assume that

inf
n≥1

gn =: g > −∞, sup
n≥1

σ2
n =: σ2 <∞, (7.8)

and there exists n0 ≥ 1 such that q+
n ≥ 1/2 for n ≥ n0. Take any i.i.d. standard Brownian

motions B1, B2, . . .. Then there exists the approximative version of the infinite ranked system

of competing Brownian particles with parameters (gn)n≥1, (σ
2
n)n≥1, (q

±
n )n≥1, starting from y,

with driving Brownian motions B1, B2, . . .

Remark 22. We have not proved uniqueness for infinite ranked system from Theorem 7.3.1.

We can so far only claim uniqueness for infinite classical systems. If we take the infinite

ranked system from Theorem 7.3.1 with symmetric collisions (q±n = 1/2, n = 1, 2, . . .), and

impose the condition that this system must be the result of ranking a classical system, then

we also get uniqueness. But without this special condition, we do not know that this is

unique.

Proof. Step 1. q+
n ≥ 1/2 for all n ≥ 1. For N ≥ 2, consider a ranked system

Y (N) =
(
Y

(N)
1 , . . . , Y

(N)
N

)′
,

of N competing Brownian particles, with parameters (gn)1≤n≤N , (σ2
n)1≤n≤N , (q±n )1≤n≤N ,

starting from Y
(N)

k (0) = yk, k = 1, . . . , N , with driving Brownian motions B1, B2, . . . , BN .
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Define the new parameters of collision

q±n =
1

2
, n ≥ 1.

Consider another ranked system

Y
(N)

=
(
Y

(N)

1 , . . . , Y
(N)

N

)′
,

of N competing Brownian particles, with parameters (gn)1≤n≤N , (σ2
n)1≤n≤N , (q±n )1≤n≤N ,

starting from Y
(N)

k (0) = yk, k = 1, . . . , N , with driving Brownian motions B1, B2, . . . , BN .

By Corollary 4.3.8 and Remark 8, which correspond to [100, Corollary 3.9, Remark 7], we

have:

Y
(N+1)

k (t) ≤ Y
(N)

k (t), Y
(N+1)
k (t) ≤ Y

(N)
k (t), k = 1, . . . , N, t ≥ 0. (7.9)

Since q+
n ≥ q+

n = 1/2 for n = 1, . . . , N , by Corollary 4.3.11 from Chapter 4 (which corre-

sponds to [100, Corollary 3.12]), we have:

Y
(N)

k (t) ≤ Y
(N)
k (t), t ≥ 0, k = 1, . . . , N. (7.10)

Lemma 7.3.2. For every T > 0, we have a.s.

lim
N→∞

min
0≤t≤T

Y
(N)

1 (t) = inf
N≥2

min
0≤t≤T

Y
(N)

1 (t) > −∞.

The proof is postponed until the end of the proof of Theorem 7.3.1. Assuming we proved

this lemma, let us continue the proof of Theorem 7.3.1.

Step 2. Assume we proved Lemma 7.3.2. For every k ≥ 1, t ≥ 0, N ≥ k, we have:

Y
(N)
k (t) ≥ Y

(N)

k (t) ≥ Y
(N)

1 (t) ≥ lim
N→∞

Y
(N)

1 (t).

By (7.9), there exists a finite pointwise limit

Yk(t) := lim
N→∞

Y
(N)
k (t). (7.11)

Now, let L(N) =
(
L

(N)
(1,2), . . . , L

(N)
(N−1,N)

)′
be the vector of local times for the system Y (N).
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Lemma 7.3.3. There exist limits

L(k,k+1)(t) := lim
N→∞

L
(N)
(k,k+1)(t),

for each k ≥ 1, uniform on every [0, T ]. The limit Yk(t) from (7.11) is also uniform on every

[0, T ] for every k ≥ 1.

The proof of Lemma 7.3.3 is also postponed until the end of the proof of Theorem 7.3.1.

Assuming we proved this lemma, let us complete the proof of Theorem 7.3.1 for the case when

q+
n ≥ 1/2 for all n ≥ 1. Uniform limits of continuous functions are continuous; therefore,

L(k,k+1) and Yk are continuous. We have:

Y
(N)
k (t) = yk + gkt+ σkBk(t) + q+

k L
(N)
(k−1,k)(t)− q

−
k L

(N)
(k,k+1)(t), k = 1, 2, . . . , t ≥ 0.

Letting N →∞, we have:

Yk(t) = yk + gkt+ σkBk(t) + q+
k L(k−1,k)(t)− q−k L(k,k+1)(t), k = 1, 2, . . . , t ≥ 0.

Finally, let us show that L(k,k+1) and Yk satisfy the properties (i) - (iii) of Definition 32.

Some of these properties follow directly from the uniform covergence and the corresponding

properties for finite systems Y (N). The nontrivial part is to prove that L(k,k+1) can increase

only when Yk = Yk+1. Suppose that for some k ≥ 1 we have: Yk(t) < Yk+1(t) for t ∈ [α, β] ⊆

R+. By continuity, there exists ε > 0 such that Yk+1(t)−Yk(t) ≥ ε for t ∈ [α, β]. By uniform

convergence, for N ≥ N0 we have:

Y
(N)
k+1 (t)− Y (N)

k (t) ≥ ε

2
, t ∈ [α, β].

So L
(N)
(k,k+1) is constant on [α, β]: L

(N)
(k,k+1)(α) = L

(N)
(k,k+1)(β). This is true for all N ≥ N0.

Letting N → ∞, we get: L(k,k+1)(α) = L(k,k+1)(β). Therefore, L(k,k+1) is also constant on

[α, β].

Step 3. Now, consider the case when q+
n ≥ 1/2 only for n ≥ n0. It suffices to show that

(Y
(N)
k (t))N≥k is bounded from below (this is the crucial part of the proof). For N ≥ n0 + 2,

consider the system

Ỹ (N) =
(
Ỹ

(N)
n0+1, . . . , Ỹ

(N)
N

)′
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ofN−n0 competing Brownian particles with parameters (gn)n0<n≤N , (σ2
n)n0<n≤N , (q±n )n0<n≤N ,

starting from (yn0+1, . . . , yN)′, with driving Brownian motions Bn0+1, . . . , BN . By Corol-

lary 4.3.8 and Remark 8, which correspond to [100, Corollary 3.9, Remark 7], we have:

Y
(N)
k (t) ≥ Ỹ

(N)
k (t), for n0 < k ≤ N and t ≥ 0. (7.12)

But for every k > n0 and t ∈ [0, T ], the sequence (Ỹ
(N)
k (t))N>k is bounded below: we proved

this earlier in the proof of Theorem 7.3.1. Let us show that for every t ∈ [0, T ], the sequence

(Ỹ
(N)

1 (t))N≥2 is bounded below. Indeed, again applying Corollary 4.3.8 from Chapter 4,

which corresponds to [100, Corollary 3.9], we get:

Z
(n0+1)
k (t) ≥ Z

(N)
k (t), t ≥ 0, k = 1, . . . , n0, N ≥ n0 + 2.

And

Y
(N)

1 (t) = Y
(N)
n0+1(t)− Z(N)

n0
(t)− . . .− Z(N)

1 (t) ≥ Y
(N)
n0+1(t)− Z(n0+1)

1 (t)− . . .− Z(n0+1)
n0

(t).

But (Y
(N)
n0+1(t))N≥n0+2 is bounded from below, and Z

(n0+1)
k (t) for k = 1, . . . , n0 are independent

of N . Therefore, (Y
(N)

1 (t))N≥2 is bounded from below. The rest of the proof is the same as

in the case when q+
n ≥ 1/2 for all n = 1, 2, . . .

Proof of Lemma 7.3.2. It suffices to show that, as u→∞, we have:

P

(
min

0≤t≤T
Y

(N)

1 (t) < −u
)
→ 0.

The ranked system Y
(N)

has the same law as the result of ranking of a classical system

X(N) =
(
X

(N)
1 , . . . , X

(N)
N

)′
with the same parameters: drift coefficients (gn)1≤n≤N , diffusion coefficients (σ2

n)1≤n≤N , start-

ing from X(N)(0) = (y1, . . . , yN)′. These components satisfy the following system of SDE:

dX
(N)
i (t) =

N∑
k=1

1(X
(N)
i has rank k at time t) (gkdt+ σkdWi(t)) , i = 1, . . . , N, (7.13)
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for some i.i.d. standard Brownian motions W1, . . . ,WN . In particular,

Y
(N)

1 (t) ≡ min
i=1,...,N

X
(N)
i (t).

Therefore,

min
0≤t≤T

Y
(N)

1 (t) = min
1≤i≤N

min
0≤t≤T

X
(N)
i (t). (7.14)

We can rewrite (7.13) as

X
(N)
i (t) = yi +

∫ t

0

βN,i(s)ds+

∫ t

0

ρN,i(s)ds,

where

βN,i(t) :=
N∑
k=1

1(X
(N)
i has rank k at time t)gk,

ρN,i(t) :=
N∑
k=1

1(X
(N)
i has rank k at time t)σk.

Because of (7.8), we get:

βN,i(t) ≥ g, |ρN,i(t)| ≤ σ, t ≥ 0.

Therefore,

X
(N)
i (t) ≥ yi + gT +MN,i(t), where MN,i(t) :=

∫ t

0

ρN,i(s)dWi(s)

is a continuous square-integrable martingale with quadratic variation

〈MN,i〉t =

∫ t

0

ρ2
N,i(s)ds ≤ s2T, t ∈ [0, T ].

Let us make a time-change: for some standard Brownian motion Bi = (Bi(s), s ≥ 0), we

have:

MN,i(t) = Bi (〈MN,i〉t) .

So

min
0≤t≤T

X
(N)
i (t) ≥ yi + (gT )− + min

[0,σ2T ]
Bi(s).
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Therefore,

P

(
min

0≤t≤T
X

(N)
i (t) < −u

)
≤ P

(
min

0≤t≤σ2T
Bi(t) < −u− yi − (gT )−

)
= P

(
max

0≤t≤σ2T
Bi(t) > u+ yi + (gT )−

)
= 2P

(
Bi(σ

2T ) > u+ yi + (gT )−
)

= 2Ψ

(
u+ yi + (gT )−

σ
√
T

)
.

From (7.14), we have:

P

(
min

0≤t≤T
Y

(N)

1 (t) < −u
)
≤

N∑
i=1

P

(
min

0≤t≤T
X

(N)
i (t) < −u

)
≤ 2

N∑
i=1

Ψ

(
u+ yi + (gT )−

σ
√
T

)
.

Since the sequence of real numbers (Y
(N)

1 (t))N≥2 is nonincreasing for every t ≥ 0, using

Lemma 7.7.1, we have:

P

(
min

0≤t≤T
Y

(N)

1 (t) < −u
)

= lim
N→∞

P

(
min

0≤t≤T
Y

(N)

1 (t) < −u
)

≤ lim
N→∞

2
N∑
i=1

Ψ

(
u+ yi + (gT )−

σ
√
T

)
= 2

∞∑
i=1

Ψ

(
u+ yi + (gT )−

σ
√
T

)
<∞.

Let u→∞. Then

yi + (gT )− + u

σ
√
T

→∞, Ψ

(
yi + (gT )− + u

σ
√
T

)
→ 0.

Applying Lebesgue dominated convergence theorem to this series (and using the fact that Ψ

is decreasing), we get:

∞∑
i=1

Ψ

(
u+ yi + (gT )−

σ
√
T

)
→ 0 as u→∞.

This completes the proof of Lemma 7.3.2.

Proof of Lemma 7.3.3. Applying Corollary 4.3.8 (which corresponds to [100, Corollary

3.9]) again, we have:

L
(N)
(k,k+1)(t)− L

(N)
(k,k+1)(s) ≤ L

(M)
(k,k+1)(s)− L

(M)
(k,k+1)(s), 0 ≤ s ≤ t, 1 ≤ k < N < M ; (7.15)
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Note that yk = Y
(N)
k (0), N ≥ k, does not depend on N , by construction of the system. So

Y
(N)

1 (t) = y1 + g1t+ σ1B1(t)− q−1 L
(N)
(1,2)(t).

Since Y
(N)

1 (t) → Y1(t) and q−1 > 0: the sequence (L
(N)
(1,2)(t))N≥2 has a limit L(1,2)(t) :=

limN→∞ L
(N)
(1,2)(t) for every t ≥ 0. Letting M → ∞ in (7.15), we get: L(1,2)(t) − L(1,2)(s) ≥

L
(N)
(1,2)(t)− L

(N)
(1,2)(s), for 0 ≤ s ≤ t. Rewrite this as

L(1,2)(t)− L(N)
(1,2)(t) ≥ L(1,2)(s)− L(N)

(1,2)(s). (7.16)

But we also have: (L
(N)
(1,2)(t))N≥2 is nondecreasing. Therefore,

L(1,2)(s)− L(N)
(1,2)(s) ≥ 0. (7.17)

In addition,

L
(N)
(1,2)(t)→ L(1,2)(t) as N →∞. (7.18)

Combining (7.16), (7.17), (7.18), we get: L
(N)
(1,2)(s) → L(1,2)(s), as N → ∞, uniformly on

every [0, t]. Therefore, letting N →∞ in (7.9), we get:

Y1(t) = y1 + g1t+ σ1B1(t)− q−1 L(1,2)(t), t ≥ 0,

and Y
(N)

1 (s)→ Y1(s) uniformly on every [0, t]. Since Y
(N)

1 and L
(N)
(1,2) are continuous for every

N ≥ 2, and the uniform limit of continuous functions is continuous, we conclude that the

functions Y1 and L(1,2) are also continuous. Now,

Y
(N)

2 (t) = y2 + g2t+ σ2B2(t) + q+
2 L

(N)
(1,2)(t)− q

−
2 L

(N)
(2,3)(t), t ≥ 0.

But

Y
(N)

2 (t)→ Y2(t) and L
(N)
(1,2)(t)→ L(1,2)(t) as N →∞.

Since q−2 > 0, we have: there exists a limit L(2,3)(t) := lim
N→∞

L
(N)
(2,3)(t). Similarly to L

(N)
(1,2) →

L(1,2), we prove that this convergence is uniform on every [0, t]. So Y
(N)

2 → Y2 as N → ∞

uniformly on every [0, t]. Thus Y2 and L(2,3) are continuous.
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Analogously, we can prove that for every k ≥ 1, the limits

L(k,k+1)(t) = lim
N→∞

L
(N)
(k,k+1)(t) and Yk(t) = lim

N→∞
Y

(N)
k (t)

exist and are uniform on every [0, T ]. This completes the proof of Lemma 7.3.3, and with it

the proof of Theorem 7.3.1.

Let us now prove some additional properties of this newly constructed approximative

version of an infinite system of competing Brownian particles. These are analogous to the

properties of an infinite classical system of competing Brownian particles, stated in Propo-

sition 7.2.4 above.

Lemma 7.3.4. For an approximative version of an infinite ranked system from Theorem 7.3.1,

we have:

(i) for every y ∈ R and T > 0, a.s. there are only finitely many k ≥ 1 such that

min
0≤t≤T

Yk(t) ≤ y;

(ii) for every t ≥ 0, we have:

∞∑
k=1

e−αY
2
k (t) <∞ for every α > 0.

Proof. Step 1. First, consider the case q+
n ≥ 1/2 for all n ≥ 1.

(i) It suffices to show that

∞∑
n=1

P

(
min

0≤t≤T
Yk(t) < u

)
<∞,

and then apply the Borel-Cantelli lemma. But for every k ≥ 1, we have:

Yk(t) = lim
N→∞

Y
(N)
k (t), (7.19)

uniformly on [0, T ]. Therefore,

P

(
min

0≤t≤T
Yk(t) < u

)
= lim

N→∞
P

(
min

0≤t≤T
Y

(N)
k (t) < u

)
. (7.20)
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We claim that the following estimate is true:

P

(
min

0≤t≤T
Y

(N)
k (t) < u

)
≤ 2

N∑
j=k

Ψ

(
(gT )− + yj − u

σ
√
T

)
. (7.21)

Assuming that we proved (7.21), let us complete the proof. Letting N → ∞ and us-

ing (7.20), we get:

P

(
min

0≤t≤T
Yk(t) < u

)
≤ 2

∞∑
j=k

Ψ

(
(gT )− + yj − u

σ
√
T

)
.

Now, let K := max{k | min[0,T ] Yk < u}. Then

P(K ≥ k) = P

(
min

0≤t≤T
Yk(t) < u

)
≤ 2

∞∑
j=k

Ψ

(
(gT )− + yj − u

σ
√
T

)
→ 0

as k →∞. Therefore, K <∞ a.s., which is equivalent to (i).

Now, let us show (7.21). It suffices to show that

P

(
min

0≤t≤T
Y

(N)

k (t) < u

)
≤ 2

N∑
j=k

Ψ

(
(gT )− + yj − u

σ
√
T

)
,

because of (7.10). Now, consider another ranked system

Y ′ = (Y ′k , . . . , Y
′
N)
′

of N −k+ 1 competing Brownian particles, with drift coefficients (gn)k≤n≤N , diffusion coeffi-

cients (σ2
n)k≤n≤N , and symmetric collisions, so the parameters of collisions are q±n = 1/2, k ≤

n ≤ N , with driving Brownian motions Bk, . . . , BN (where B1, . . . , BN are driving Brownian

motions for Y (N)), starting from (yk, . . . , yN)′. Then by Remark 8 from Chapter 4 we have:

Y ′j (t) ≤ Y j(t), j = k, . . . , N, t ≥ 0.

So it suffices to show that

P

(
min

0≤t≤T
Y ′k(t) < u

)
≤ 2

N∑
j=k

Ψ

(
(gT )− + yj − u

σ
√
T

)
,
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but this is done in the same way as in the proof of Theorem 7.2.1. This completes the proof

of (7.21).

(ii) For every k = 1, 2, . . . and every α > 0, we have:

k∑
j=1

e−αY
2
j (t) = lim

N→∞

k∑
j=1

e
−α

[
Y

(N)
j

]2
≤ lim

N→∞

k∑
j=1

e
−α

[
Y

(N)
j

]2
,

where we use the notation from the proof of Theorem 7.3.1. The latter limit for differ-

ent N forms a sequence of real numbers which is nondecreasing, because (Y
(N)

j (t))N≥j is

nonincreasing. In the proof of Lemma 7.3.2, we showed that for any T > 0, and i = 1, 2, . . .

Y
(N)
i (T ) ≥ min

0≤t≤T
Y

(N)
i (t) ≥ yi + (gT )− + min

0≤t≤σ2T
Bi(t),

where B1, B2, . . . are standard Brownian motions. In the proof of Lemma 7.2.4 (ii), see (7.7),

we showed that for all but finitely many i ≥ 1,

yi + (gT )− + min
0≤t≤σ2T

Bi(t) ≥
1

2
yi + (gT )−.

By Lemma 7.7.1, for all α > 0,

∞∑
i=i0

e−α((1/2)yi+(gT )−)2 = C <∞,

and this constant C depends only on T, α, i0 and (yj)j≥1. (It is, however, random, because

i0 is random.) Therefore, for all k ≥ i0,

k∑
j=i0

e−αY
2
j (t) ≤ C.

Let k →∞ and complete the proof of (ii).

Step 2. Now, let us prove (i) and (ii) for the general case. We still have (7.19). Recall

the definition of a finite ranked system

Ỹ (N) =
(
Ỹ

(N)
n0+1, . . . , Ỹ

(N)
N

)′
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of competing Brownian particles from the proof of Theorem 7.3.1, Step 3. In Theorem 7.3.1,

we prove that for every k > n0, as N →∞, uniformly on [0, T ] we have:

Ỹ
(N)
k (t)→ Ỹk(t),

where Ỹ = (Ỹk)k>n0 is an infinite ranked system of competing Brownian particles with

parameters (gn)n>n0 , (σ
2
n)n>n0 , (q

±
n )n>n0 . But q+

n ≥ 1/2 for all n > n0, and therefore the

system Ỹ satisfies the statements (i) and (ii) of Lemma 7.3.4. Letting N →∞ in (7.12), we

get:

Yk(t) ≥ Ỹk(t), t ∈ [0, T ], n0 < k ≤ N.

Therefore, the system (Yk)k≥1 also satisfies the statements (i) and (ii) of Lemma 7.3.4.

Let us also state another useful lemma; the proof is postponed until Section 7.6.

Lemma 7.3.5. Consider the infinite system from Theorem 7.3.1. Then for every t > 0 a.s.

the vector Y (t) = (Yk(t))k≥1 has no ties.

We developed comparison techniques for finite systems of competing Brownian particles

in Chapter 4. These techniques also work for infinite ranked systems, provided we take their

approximative versions. By taking limits as the number n of particles goes to infinity, we can

formulate the same comparison results for these two infinite systems. Let us give an example.

The proof trivially follows from Corollary 4.3.10 from Chapter 4 (which corresponds to [100,

Corollary 3.11]) and is therefore omitted.

Corollary 7.3.6. Take two approximative versions Y and Y of an infinite system of com-

peting Brownian particles with parameters

(gn)n≥1, (σ2
n)n≥1, (q±n )n≥1,

with the same driving Brownian motions. Let Z and Z be the corresponding gap processes.

Then:

(i) If Y (0) ≤ Y (0), then Y (t) ≤ Y (t), t ≥ 0.

(ii) If Z(0) ≤ Z(0), then Z(t) ≤ Z(t), t ≥ 0.
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The next corollary is a counterpart of Corollary 4.3.12 from Chapter 4 (which is also

mentioned as [100, Corollary 3.13]).

Corollary 7.3.7. Take two approximative versions Y and Y of an infinite system of com-

peting Brownian particles with parameters

(gn)n≥1, (σ2
n)n≥1, (q±n )n≥1,

and

(gn)n≥1, (σ2
n)n≥1, (q±n )n≥1,

with the same driving Brownian motions, starting from the same initial conditions. Let Z

and Z be the corresponding gap processes. Then:

(i) If gn ≤ gn, n = 1, 2, . . ., then Y (t) ≤ Y (t), t ≥ 0;

(ii) If gn+1 − gn ≤ gn+1 − gn, n = 1, 2, . . ., then Z(t) ≤ Z(t), t ≥ 0.

Remark 23. If, in each of these two corollaries, we remove the requirement that the two

systems have the same driving Brownian motions, then we have stochastic ordering instead

of pathwise ordering. The same applies to Corollary 7.3.6 if we change a.s. comparison

Y (0) ≤ Y (0) (Z(0) ≤ Z(0), respectively) to stochastic comparison of these initial conditions.

7.3.2 Approximative version of an infinite classical system

Now, consider infinite classical systems of competing Brownian particles. If you rank the

named particles in it, then, as shown in Proposition 7.2.4, we get an infinite ranked system

Y = (Yn)n≥1 of competing Brownian particles in the sense of Definition 32, with q±n = 1/2,

n = 1, 2, . . . We learned how to construct infinite ranked systems from Theorem 7.3.1: by

approximating them with finite systems. We know from [105] and [59] that infinite classical

systems X = (Xn)n≥1 can also be constructed, for the case when the sequences (gn)n≥1 and

(σ2
n)n≥1 stabilize starting from some n0. In this case, these classical systems exist and are

unique in the weak sense.
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In this section, we prove weak existence (but not uniqueness) of an infinite classical system

in a more general case: when the sequences (gn)n≥1 and (σ2
n)n≥1 are bounded. We construct

an approximative version of such system, just like we did above for an infinite ranked system.

We also show that if we rank the approximative version of an infinite classical system, we get

the approximative version of an infinite ranked system. In particular, the infinite systems

constructed in Proposition 7.2.1 (for which weak existence and uniqueness hold) from [105]

and [59] turn out to be approximative versions. In particular, the infinite Atlas model is an

approximative version.

In the next section, we get some results for approximative versions of infinite ranked

systems. This connection allows us to apply these results to infinite classical systems; in

particular, the ones constructed in Proposition 7.2.1. This is how we get Theorem 1.4.1 from

Chapter 1.

We were able to prove that the answer is affirmative, if (gn)n≥1 is bounded. This allows us

to apply later results about stationary distributions and convergence (proved using the same

approximation techniques), to classical systems X as well as ranked systems Y , provided

that the collisions are symmetric: q±n = 1/2, n = 1, 2, . . .

To put this another way: It is known that infinite classical systems exist and are unique in

the weak sense. If you rank named particles in this system, you get an infinite ranked system.

At the same time, we have constructed approximative versions of infinite ranked systems, and

we can use comparison techniques for them. The following theorem tells that the infinite

ranked system emerging from the classical innfinite system is in fact the approximative

version. So we can apply the whole range of comparison techniques and the results of this

chapter to infinite classical systems. The proof can be found in Section 7.6.

Theorem 7.3.8. Fix parameters (gn)n≥1 and (σ2
n)n≥1 such that

sup
n≥1
|gn| <∞ and sup

n≥1
σ2
n <∞.
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Fix a rankable initial condition x ∈ R∞, such that

∞∑
n=1

e−αx
2
n <∞ for all α > 0.

Consider a copy X(N) = (X(N)(t), t ≥ 0) of a classical system of N competing Brownian

particles with drift coefficients (gn)1≤n≤N and diffusion coefficients (σ2
n)1≤n≤N , which starts

from X(N)(0) = [x]N . Let Y (N) be the corresponding ranked system. Then

X
(N)
k ⇒ Xk as N →∞, (7.22)

for every k ≥ 1, in the topology of C[0, T ] for every T > 0, where X = (Xk)k≥1 turns out to

be a infinite classical system of competing Brownian particles with parameters (gn)n≥1 and

(σ2
n)n≥1. Moreover, let Y (N) be the ranked system X(N). Then

Y
(N)
k ⇒ Yk, as N →∞, (7.23)

for every k ≥ 1, in the topology of C[0, T ] for every T > 0, where (Yk)k≥1 is the ranked

system (Xk)k≥1.

7.4 The Gap Process: Stationary Distributions and Weak Convergence

In this section, we prove Theorem 1.4.1 and similar results for general infinite systems of

competing Brownian particles. First, we construct a stationary distribution π for the gap

process Z = (Z(t), t ≥ 0) of such system. Then we prove that: (i) any weak limit point

of the gap process Z(t) as t → ∞ is stochastically dominated by π, and (ii) if the initial

gaps Z(0) are stochastically larger than π, then Z(t)⇒ π as t→∞ (if only we consider an

approximative version of the system).

7.4.1 Stationary Distributions.

Consider again an infinite system Y of competing Brownian particles with parameters (gn)n≥1,

(σ2
n)n≥1, (q±n )n≥1. Let Z be its gap process.
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Definition 34. Let π be a probability measure on R∞+ . We say that π is a stationary

distribution for the gap process for the system above if there exists a version Y of this

system such that for every t ≥ 0, we have: Z(t) v π.

Let us emphasize that in this chapter, we do not study uniqueness and Markov property.

We simply construct a copy of the system with required properties.

We already know from [89] that

π∞ =
∞⊗
n=1

E(2)

is a stationary distribution for the gap process of the infinite Atlas model:

g1 = 1, g2 = g3 = . . . = 0, σ1 = σ2 = . . . = 1, q±1 = q±2 = . . . =
1

2
.

Here, we find stationary distributions for other infinite systems of competing Brownian par-

ticles and prove convergence results for them. In addition, we show how to prove the main

result of [89] in an arguably more natural way.

Consider, for each N ≥ 2, the ranked system of N competing Brownian particles with

parameters (gn)1≤n≤N , (σ
2
n)1≤n≤N , (q

±
n )1≤n≤N . Assume that these parameters are such that

for N > N0 the gap process has a stationary distribution. According to Proposition 3.5.1,

this is the case when

[R(N)]−1µ(N) < 0,

where

R(N) =



1 −q−2 0 . . . 0

−q+
2 1 −q−3 . . . 0

0 −q+
3 1 . . . 0

...
...

...
. . .

...

0 0 0 . . . 1


is an (N − 1)× (N − 1) matrix, and

µ(N) = (g2 − g1, g3 − g2, . . . , gN − gN−1)′.
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Let B1, B2, . . . be i.i.d. standard Brownian motions. Let π(N) be the stationary distribution

on RN−1
+ . Let z(N) v π(N) be an F0-measurable random variable and consider the system Y

(N)

ofN ranked competing Brownian particles with parameters (gn)1≤n≤N , (σ
2
n)1≤n≤N , (q

±
n )1≤n≤N ,

starting from (0, z
(N)
1 , . . . , z

(N)
1 + . . .+ z

(N)
N−1)′, driven by B1, . . . , BN .

Lemma 7.4.1. [π(N+1)]N−1 � π(N).

Proof. Take a system Ỹ (N) of N competing Brownian particles with the same parameters

and the same driving Brownian motions as Y
(N)

, but starting from (0, . . . , 0)′ ∈ RN . Take

another system Ỹ (N+1) of N + 1 competing Brownian particles with parameters

(gn)1≤n≤N+1, (σ2
n)1≤n≤N+1, (q±n )1≤n≤N+1,

and driving Brownian motions B1, . . . , BN+1, starting from (0, 0, . . . , 0)′ ∈ RN+1. Then by

Corollary 4.3.8 from Chapter 4, which corresponds to [100, Corollary 3.9], the corresponding

gap processes Z̃(N) and Z̃(N+1) satisfy

Z̃(N)(t) ≥ [Z̃(N+1)(t)]N−1, t ≥ 0.

But

Z̃(N)(t)⇒ π(N), Z̃(N+1)(t)⇒ π(N+1), t→∞.

So [π(N+1)]N−1 � π(N).

Without loss of generality, by changing the probability space we can take z(N) v π(N) such

that a.s. [z(N+1)]N−1 ≤ z(N), for N > N0. In other words, z
(N+1)
k ≤ z

(N)
k , k = 1, . . . , N − 1.

Since all z
(N)
k are always nonnegative, there exists

zk = lim
N→∞

z
(N)
k , k ≥ 1.

Denote by π the distribution of (z1, z2, . . .) on R∞+ . Then π becomes a prospective stationary

distribution for the gap process for the infinite system of competing Brownian particles.

Equivalently, we can define π as follows: for every N ≥ 1, let

[π(M)]N−1 ⇒ ρ(N), M →∞.
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These finite-dimensional distributions ρ(N) are consistent:

[ρ(N+1)]N−1 = ρ(N), N ≥ 1.

So by Kolmogorov’s theorem there exists a unique distribution π on R∞+ such that [π]N−1 =

ρ(N) for all N ≥ 1.

The next lemma allows us to rewrite the condition (7.1) in terms of the gap process. The

proof is postponed until Section 7.5 (Appendix).

Lemma 7.4.2. For a sequence y = (yn)n≥1 ∈ R∞ such that yn ≤ yn+1, n ≥ 1, let z =

(zn)n≥1 ∈ R∞ be defined by zn = yn+1 − yn, n ≥ 1. Then y satisfies (7.1) if and only if z

satisfies
∞∑
n=1

exp
(
−α(z1 + . . .+ zn)2

)
<∞ for all α > 0. (7.24)

Now, let us state one of the two main results of this section.

Theorem 7.4.3. Consider an infinite system of competing Brownian particles with param-

eters

(gn)n≥1, (σ2
n)n≥1, (q±n )n≥1.

Assume

[R(N)]−1µ(N) < 0, N > N0.

Suppose that

inf
n≥1

gn > −∞, sup
n≥1

σ2
n <∞,

and for some n0 ≥ 1 we have:

q+
n ≥

1

2
, n ≥ n0.

Assume that for N > N0 we have: [R(N)]−1µ(N) < 0, so that we construct the distribution π.

Assume, in addition, that π-a.s. (7.24). Then we can construct an approximative version of

the infinite system of competing Brownian particles with parameters

(gn)n≥1, (σ2
n)n≥1, (q±n )n≥1,
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such that π is a stationary distribution for the gap process.

Remark 24. For finite systems of ranked competing Brownian particles, if a stationary dis-

tribution for the gap process exists, it is unique. This was already mentioned in Section 3.5.

For infinite system, we do not know whether this is true.

Proof. Step 1. Using the notation of Theorem 7.3.1, we have:

Y
(N)
k → Yk, N →∞,

for every k ≥ 1, uniformly on every [0, T ]. Now, let

Y
(N)

=
(
Y

(N)

1 , . . . , Y
(N)

N

)′
be the ranked system of N competing Brownian particles, which has the same parameters

and driving Brownian motions as Y (N) =
(
Y

(N)
1 , . . . , Y

(N)
N

)′
, but starts from (0, z

(N)
1 , z

(N)
1 +

z
(N)
2 , . . . , z

(N)
1 +z

(N)
2 +. . .+z

(N)
N−1)′, rather than (0, z1, z1+z2, . . . , z1+z2+. . .+zN−1)′. In other

words, the gap process Z
(N)

of the system Y
(N)

is in its stationary regime: Z
(N)

(t) v π(N),

t ≥ 0. It suffices to show that a.s., as N →∞, for all t ≥ 0 and k ≥ 1, we have:

Yk(t) = lim
N→∞

Y
(N)
k (t). (7.25)

Indeed, assuming that we have already shown this, the proof can be quickly finished, as

follows: for every t ≥ 0 and k = 1, 2, . . ., a.s.

Z
(N)

k (t) = Y
(N)

k+1(t)− Y (N)

k (t)→ Zk(t) = Yk+1(t)− Yk(t), N →∞.

Therefore, for every t ≥ 0 and N ≥ 2, a.s. we have:(
Z

(M)

1 (t), . . . , Z
(M)

N−1(t)
)′
→ (Z1(t), . . . , ZN−1(t))′ , M →∞.

But

Z
(M)

(t) =
(
Z

(M)

1 (t), . . . , Z
(M)

M−1(t)
)′
v π(M)
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for M ≥ 2 and t ≥ 0, and

[π(M)]N−1 ⇒ [π]N−1.

So for N ≥ 2, t ≥ 0 we have:

(Z1(t), . . . , ZN−1(t))′ v [π]N−1.

Thus, for Z(t) := (Z1(t), Z2(t), . . .), we have:

Z(t) v π, t ≥ 0.

Step 2. Let us prove (7.25). First, since z1 ≤ z
(N)
1 , . . . , zN−1 ≤ z

(N)
N−1, we have:

Y (N)(0) =(0, z1, z1 + z2, . . . , z1 + z2 + . . .+ zN−1)′

≤ Y
(N)

(0) = (0, z
(N)
1 , z

(N)
1 + z

(N)
2 , . . . , z

(N)
1 + z

(N)
2 + . . .+ z

(N)
N−1)′.

By Corollary 4.3.10(i) from Chapter 4, which corresponds to [100, Corollary 3.11(i)],

Y
(N)
k (t) ≤ Y

(N)

k (t), t ≥ 0, k = 1, . . . , N. (7.26)

As shown in the proof of Theorem 7.3.1,

Y
(N)
k (t) ≥ Yk(t), k = 1, . . . , N, t ≥ 0. (7.27)

Combining (7.26) and (7.27), we get:

Yk(t) ≤ Y
(N)

k (t), k = 1, . . . , N, t ≥ 0. (7.28)

On the other hand, fix ε > 0 and N ≥ 2. Then lim
M→∞

z
(M)
k = zk, for k = 1, . . . , N − 1. So

there exists M0(N, ε) such that for M > M0(N, ε) we have:

z
(M)
1 + . . .+ z

(M)
k ≤ z1 + . . .+ zk + ε, k = 1, . . . , N − 1.

For such M , let Ỹ = (Ỹ1, . . . , ỸN)′, be another system of N competing Brownian parti-

cles, with the same parameters and driving Brownian motions, as Y (N), but starting from
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(0, z
(M)
1 , z

(M)
1 + z

(M)
2 , . . . , z

(M)
1 + z

(M)
2 + . . . + z

(M)
N−1)′. By Corollary 4.3.8, which corresponds

to [100, Corollary 3.9],

Ỹk(t) ≥ Y
(M)

k (t), k = 1, . . . , N, t ≥ 0, (7.29)

since Ỹ is obtained from Y
(M)

by removing the top M −N particles. However,

Y (N) + ε1N := (Y
(N)

1 + ε, . . . , Y
(N)
N + ε)′,

is also a system of N competing Brownian particles, with the same parameters and driving

Brownian motions as Y (N), but starting from (ε, z1 + ε, . . . , z1 + . . . + zN−1 + ε)′. Since

Y (N)(0) + ε ≥ Ỹ (0), because of (7.4.1), by Corollary 4.3.10 (i), which corresponds to [100,

Corollary 3.11(i)], we have:

Ỹk(t) ≤ Y
(N)
k (t) + ε, k = 1, . . . , N, t ≥ 0. (7.30)

Combining (7.29) and (7.30), we get: Y
(M)

k (t) ≤ Y
(N)
k (t) + ε, for k = 1, . . . , N , and t ≥ 0.

But for every fixed k = 1, 2, . . ., limN→∞ Y
(N)
k (t) = Yk(t). So there exists N0(k) ≥ 2 such

that Y
(N0)
k (t) ≤ Yk(t) + ε. Meanwhile, for M > M0(N0(k), k) we get:

Y
(M)

k (t) ≤ Yk(t) + 2ε. (7.31)

We also have from (7.28) that

Y
(M)

k (t) ≥ Yk(t). (7.32)

Combining (7.31) and (7.32), we get (7.25).

7.4.2 Stationary distributions in case of skew-symmetry conditions

In this subsection, we apply Theorem 7.4.3 to the case of the skew-symmetry condition:

(q−k−1 + q+
k+1)σ2

k = q−k σ
2
k+1 + q+

k σ
2
k−1, k = 2, 3, . . . (7.33)

Then

π(N) =
N−1⊗
k=1

Exp(λ
(N)
k ), λ

(N)
k =

2

σ2
k + σ2

k+1

(
−[R(N)]−1µ(N)

)
k
, k = 1, . . . , N − 1.
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Note that

[π(N+1)]N−1 =
N−1⊗
k=1

Exp(λ
(N+1)
k ).

But we know that

[π(N+1)]N−1 � π(N) =
N−1⊗
k=1

Exp(λ
(N)
k ).

But Exp(λ′) � Exp(λ′′) is equivalent to λ′ ≥ λ′′. So λ
(N)
k ≤ λ

(N+1)
k , for k = 1, . . . , N − 1.

In other words, for every k, the sequence (λ
(N)
k )N>k is nondecreasing. There exists a limit

(possibly infinite)

λk := lim
N→∞

λ
(N)
k , k = 1, 2, . . .

Assume that λk <∞ for all k = 1, 2, . . .. Then

π =
∞⊗
k=1

Exp(λk). (7.34)

If some λk =∞, then we can also write (7.34), understanding that Exp(∞) = δ0 is the Dirac

point mass at zero. This π is a candidate for a stationary distribution. If the condition (7.24)

is satisfied π-a.s., then it is a stationary distribution. Let us give a sufficient condition

when (7.24) is satisfied or not satisfied π-a.s. (See Section 7.7 for the proof.)

Lemma 7.4.4. Consider a distribution π as in (7.34). Let Λn :=
∑n

k=1 λ
−1
k .

(i) Let βn > 0 be such that
∑∞

n=1 β
−1
n <∞. If

∞∑
n=1

e−αΛ2
n+αλ−4

n β2
n <∞ for all α > 0,

then π-a.s. (7.24) is satisfied. If

∞∑
n=1

e−αΛ2
n−αλ

−4
n β2

n =∞ for some α > 0,

then it is wrong that π-a.s. (7.24) is satisfied.

(ii) If supn≥1 λn <∞ then π-a.s. (7.24) is satisfied.

(iii) If
∑∞

n≥1 λ
−2
n <∞, then π-a.s. (7.24) is satisfied if and only if

∞∑
n=1

e−αΛ2
n <∞ for all α > 0. (7.35)
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One example was already mentioned earlier:

π∞ =
∞⊗
n=1

Exp(2)

is a stationary distribution for the infinite Atlas model, when

g1 = 1, g2 = g3 = . . . = 0, σ1 = σ2 = . . . = 1, q±1 = q±2 = . . . =
1

2
.

Indeed, the finite Atlas model of N particles has stationary distribution

π(N) =
N−1⊗
k=1

Exp

(
2
N − k
N

)
for the gap process. (See [89], Example 1.) Here, for every k = 1, 2, . . .

λ
(N)
k = 2

N − k
N

→ λk := 2 as N →∞.

These λk, k = 1, 2, . . ., satisfy Lemma 7.4.4 (ii). So π∞ is indeed a stationary distribution

for the gap process of the infinite Atlas model. This was proved in [89], but the proof here

seems to be a bit more natural.

More generally, assume the collisions are symmetric:

q±n =
1

2
, n = 1, 2, . . .

Denote, as before,

gk :=
1

k
(g1 + . . .+ gk) , k = 1, 2, . . .

Then the skew-symmetry condition takes the form

σ2
k+1 − σ2

k = σ2
k − σ2

k−1, k = 2, 3, . . .

In other words, σ2
k must linearly depend on k. Because of the conditions of Theorem 7.4.3,

we must have: σ2
k = σ2, k = 1, 2, . . .. In this case, [R(N)]−1µ(N) < 0 if and only if

gk > gN , k = 1, . . . , N − 1.
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If this is true for N > N0, then

π(N) =
N−1⊗
k=1

Exp
(
λ

(N)
k

)
, λ

(N)
k :=

2k

σ2
(gk − gN) .

Suppose there exists

lim
N→∞

gN =: g∞.

Then

λ
(N)
k → λk :=

2k

σ2
(gk − g∞) .

So

π =
∞⊗
k=1

Exp

(
2k

σ2
(gk − g∞)

)
.

If λk, k = 1, 2, . . ., satisfy Lemma 7.4.4, then π is a stationary distribution.

Example 11. Consider a model with symmetric collisions, and with drift and diffusion coef-

ficients

g1 = g2 = . . . = gM = 1, gM+1 = gM+2 = . . . = 0, σ1 = σ2 = . . . = 1.

Then

gk = k, k = 1, . . . ,M ; gk =
M

k
, k > M.

So g∞ = limk→∞(M/k) = 0, and

λk =

2k, 1 ≤ k ≤M ;

2M, k > M.

Therefore,

π = Exp(2)⊗ Exp(4)⊗ . . .⊗ Exp(2M)⊗ Exp(2M)⊗ . . .

The parameters λk, k = 1, 2, . . ., satisfy Lemma 7.4.4 (ii), so the conclusions of this section

are valid.



186

7.4.3 Convergence Results

Now, consider questions of convergence of the gap process as t → ∞ to the stationary

distribution π constructed above. Let us outline the facts proved in this subsection (omitting

the required conditions for now).

(i) The family of random variables Z(t), t ≥ 0, is tight in R∞+ with respect to the metric ρ

from (1) (which corresponds to componentwise convergence). Any weak limit point of Z(t)

as t→∞ is stochastically dominated by π.

(ii) If we start the approximative version of the infinite system Y with gaps stochastically

larger than π, then the gap process converges weakly to π.

(iii) Any other stationary distribution for the gap process (if it exists) must be stochas-

tically smaller than π.

These are generalizations of Theorem 1.4.1 from Introduction for general infinite ranked

systems of competing Brownian particles in place of the infinite Atlas model. The rest of

this subsection is devoted to the precise statements and proofs of these facts.

Theorem 7.4.5. Consider any version (not necessarily approximative) of the infinite system

of competing Brownian particles with parameters

(gn)n≥1, (σ2
n)n≥1, (q±n )n≥1.

Suppose that for N > N0, we have:

[R(N)]−1µ(N) < 0.

(i) Then the family of R∞+ -valued random variables Z(t), t ≥ 0 is tight in R∞+ with respect

to the metric ρ from (1) (which corresponds to componentwise convergence).

(ii) Suppose for some sequence tj ↑ ∞ we have:

Z(tj) ⇒ ν, as j →∞,

where ν is some probability measure on R∞+ . Then ν � π: the measure ν is stochastically

dominated by π.
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(iii) Under conditions of Theorem 7.4.3, every stationary distribution π′ for the gap pro-

cess is stochastically dominated by π: π′ � π.

Remark 25. Let us stress: we do not need Y to be an approximative version of the system,

and we do not need the initial conditions Y (0) = y to satisfy (7.1).

Proof. (i) It suffices to show that for every k = 1, 2, . . ., the family of real-valued random

variables

Zk = (Zk(t), t ≥ 0)

is tight in R+. Find an N > k such that [R(N)]−1µ(N) < 0. Consider a finite system of N

competing Brownian particles with parameters (gn)1≤n≤N , (σ2
n)1≤n≤N , (q±n )1≤n≤N . Denote

this system by Y (N), as in the proof of Theorem 7.3.1. Let Z(N) = (Z
(N)
1 , . . . , Z

(N)
N−1)′ be the

corresponding gap process. By Proposition 3.5.1, the family of RN−1
+ -valued random variables

Z(N)(t), t ≥ 0, is tight in RN−1
+ . By Corollary 4.3.8 and Remark 8, which correspond to [100,

Corollary 3.9, Remark 7],

Z
(N)
k (t) ≥ Zk(t) ≥ 0, k = 1, . . . , N − 1.

Since the collection of real-valued random variables Z
(N)
k (t), t ≥ 0, is tight, then the collection

Zk(t), t ≥ 0, is also tight.

(ii) Fix N ≥ 2. It suffices to show that [ν]N−1 � [π]N−1. Since [π(M)]N−1 ⇒ [π]N−1, as

M → ∞, it suffices to show that for M > N , we have: [ν]N−1 � [π(M)]N−1. Consider the

system

Y (M) =
(
Y

(M)
1 , . . . , Y

(M)
M

)′
,

which is defined in Definition 33. Let Z(M) be the corresponding gap process. Then

Z(M)(t) ⇒ π(M), t→∞.

But by Corollary 4.3.8 and Remark 8, which correspond to [100, Corollary 3.9, Remark

7], Z
(M)
k (t) ≥ Zk(t), k = 1, . . . ,M − 1. So [Z(M)(t)]N−1 ≥ [Z(t)]N−1, for t ≥ 0. And

[Z(tj)]N ⇒ [ν]N , as j →∞. Thus, [π(M)]N � [ν]N .

(iii) Follows directly from (i).
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Theorem 7.4.6. Consider an approximative version Y of the infinite system of competing

Brownian particles with parameters (gn)n≥1, (σ2
n)n≥1, (q±n )n≥1. Let Z be the corresponding

gap process. Suppose it satisfies conditions of Theorems 7.4.3 and 7.4.5, so that we can

construct the distribution π. If Z(0) � π, then

Z(t)⇒ π, t→∞.

Proof. Let us show that for each t ≥ 0 we have: Z(t) � π. (Together with the results of

Theorem 7.4.5, this completes the proof.) Consider another system Y : an approximative

version of the system with the gap process Z having stationary distribution π. Then Z(0) �

Z(0) v π. By Corollary 7.3.6 (ii) above, Z(t) � Z(t) v π, t ≥ 0.

7.5 Triple Collisions for Infinite Systems

Let us define triple and simultaneous collisions for an infinite ranked system Y = (Yn)n≥1 of

competing Brownian particles.

Definition 35. We say that a triple collision between particles Yk−1, Yk and Yk+1 occurs at

time t ≥ 0 if

Yk−1(t) = Yk(t) = Yk+1(t).

We say that a simultaneous collision occurs at time t ≥ 0 if for some 1 ≤ k < l, we have:

Yk(t) = Yk+1(t) and Yl(t) = Yl+1(t).

A triple collision is a particular case of a simultaneous collision. For finite systems of

competing Brownian particles (both classical and ranked), the question of a.s. absence of

triple collisions was studied in [58], [59], [71]. A necessary and sufficient condition for a.s.

absence of any triple collisions was found in Chapter 5; see also Chapter 6 for related work.

This condition is also happens to be sufficient for a.s. absence of any simultaneous collisions.

In general, triple collisions are undesirable, because strong existence and pathwise uniqueness

for classical systems of competing Brownian particles was shown in [59] only up to the first
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moment of a triple collision. Some results about triple collisions for infinite classical systems

were obtained in the paper [59]. Here, we strengthen them a bit and also prove results for

asymmetric collisions.

It turns out that the same necessary and sufficient condition works for infinite systems

as well as for finite systems.

Theorem 7.5.1. Consider the approximative version of an infinite ranked system of com-

peting Brownian particles Y = (Yn)n≥1 with parameters

(gn)n≥1, (σ2
n)n≥1, (q±n )n≥1.

Suppose the conditions of Theorem 7.3.1 hold true.

(i) Assume that

(q−k−1 + q+
k+1)σ2

k ≥ q−k σ
2
k+1 + q+

k σ
2
k−1, k = 2, 3, . . . (7.36)

Then a.s. for any t > 0 there are no triple and no simultaneous collisions at time t.

(ii) If the condition (7.36) is violated for some k = 2, 3, . . ., then with positive probability

there exists a moment t > 0 such that there is a triple collision between particles with ranks

k − 1, k, and k + 1 at time t.

Proof. The proof resembles that of Lemma 7.3.5 and uses Lemma 7.3.4.

(i) Suppose

D = {∃t > 0 : ∃k < l : Yk(t) = Yk+1(t), Yl(t) = Yl+1(t)}.

Also, let

Dk,l = {∃t > 0 : Yk(t) = Yk+1(t), Yl(t) = Yl+1(t)}.

Then

D =
⋃
k<l

Dk,l.
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Suppose ω ∈ Dk,l, and take the t = t(ω) > 0 such that Yk(t) = Yk+1(t), and Yl(t) = Yl+1(t).

There exists an m > l such that Yl(t) = Yl+1(t) = . . . = Ym(t), because otherwise we have a

contradiction with Lemma 7.3.4 (i). Then there exist rational q−, q+ such that

t ∈ [q−, q+], and Ym(s) < Ym+1(s) for s ∈ [q−, q+].

Therefore, L(m,m+1)(t) = const on [q−, q+], and, as in Lemma 7.3.5,(
(Y1(s+ q−), . . . , Ym(s+ q−))′ , 0 ≤ s ≤ q+ − q−

)
is a ranked system of m competing Brownian particles with drift coefficients (gk)1≤k≤m, diffu-

sion coefficients (σ2
k)1≤k≤m, and parameters of collision (q±k )1≤k≤m. This system experiences a

simultaneous collision at time s = t− q− ∈ (0, q+− q−). By the Theorem 5.1.3 from Chapter

5, this event has probability zero. Let us write this formally. Let

Dk,l,q−,q+,m = {∃t ∈ (q−, q+) : Yk(t) = Yk+1(t), Yl(t) = . . . = Ym(t) < Ym+1(t),

and Ym(s) < Ym+1(s) for s ∈ (q−, q+)}.

Then

D =
⋃
k<l

Dk,l =
⋃

Dk,l,q−,q+,m,

where the latter union is taken over all positive integers k < l < m and positive rational

numbers q− < q+. This union is countable, and by Theorem 5.1.3 from Chapter 5, which

corresponds to [103, Theorem 1.2], P(Dk,l,q−,q+,m) = 0, for each choice of k, l,m, q−, q+.

Therefore, P(D) = 0, which completes the proof of (i).

(ii) Let B1, B2, . . . be the driving Brownian motions of the system Y . Consider the ranked

system of three competing Brownian particles:

Y =
(
Y k−1, Y k, Y k+1

)′
,

with drift coefficients gk−1, gk, gk+1, diffusion coefficients σ2
k−1, σ

2
k, σ

2
k+1 and parameters of

collision q±k−1, q
±
k , q

±
k+1, with driving Brownian motions Bk−1, Bk, Bk+1, starting from

(Yk−1(0), Yk(0), Yk+1(0))′.
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Let (Zk−1, Zk)
′ be the corresponding gap process. Then by By Corollary 4.3.9 and Remark 8,

which correspond to [100, Corollary 3.10, Remark 7], we get:

Zk−1(t) ≤ Zk−1(t), Zk(t) ≤ Zk(t), t ≥ 0.

But by Theorem 5.1.3 from Chapter 5, see also [103, Theorem 2], with positive probability

there exists t > 0 such that Y k−1(t) = Y k(t) = Y k+1(t). So Zk−1(t) = Zk(t) = 0. Therefore,

with positive probability there exists t > 0 such that Zk−1(t) = Zk(t) = 0, or, in other words,

Yk−1(t) = Yk(t) = Yk+1(t).

An interesting corollary of Theorem 5.1.3 from Chapter 5 for finite systems is that if

there are a.s. no triple collisions, there there are also a.s. no simultaneous collisions. This is

also true for infinite systems constructed in Theorem 7.3.1.

Remark 26. For symmetric collisions: q±n = 1/2, n = 1, 2, . . ., this result takes the following

form. There are a.s. no triple collisions if and only if the sequence (σ2
k)k≥1 is concave. In

this case, there are also a.s. no simultaneous collisions. If for some k ≥ 1 we have:

σ2
k+1 <

1

2

(
σ2
k + σ2

k+2

)
,

then with positive probability there exists t > 0 such that Yk(t) = Yk+1(t) = Yk+2(t).

Remark 27. Let us restate the main result of [59]: for a infinite classical systems of competing

Brownian particles which satisfies conditions of Theorem 7.2.1, there exists a unique strong

version up to the first triple collision. In particular, if the sequence of diffusion coefficients

(σ2
k)k≥1 is concave, then there exists a unique strong solution on the infinite time horizon.

Remark 28. Partial results of [59] for infinite classical systems of competing Brownian par-

ticles are worth mentioning: if there are a.s. no triple collisions, then (σ2
k)k≥1 is concave; if

the sequence (0, σ2
1, σ

2
2, . . .) is concave, then there are a.s. no triple collisions. In particular,

it was already shown in [59] that the infinite Atlas model, with σ1 = σ2 = . . . = 1, a.s. does

not have triple collisions.
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7.6 Proofs of Some Statements from Chapter 7

7.6.1 Proof of Theorem 7.3.8

The statement (7.23) follows from Theorem 7.3.1 immediately: the only difference is that we

do not have the same driving standard Brownian motions for all Y (N), N ≥ 2. So instead

of a.s. convergence we have weak convergence. Now, let us show (7.22). Let p
(N)
t be the

ranking permutation for the vector X(N)(t) ∈ RN . Then for 1 ≤ i ≤ N we have:

X
(N)
i (t) = xi +

∫ t

0

βN,i(s)ds+

∫ t

0

ρN,i(s)Wi(s), t ≥ 0, (7.37)

where WN,1, . . . ,WN,N are i.i.d. standard Brownian motions,

βN,i(t) =
N∑
k=1

1(p
(N)
t (k) = i)gk, and ρN,i(s) =

N∑
k=1

1(p
(N)
t (k) = i)σk.

Note that ∣∣βN,i(t)∣∣ ≤ max
k≥1
|gk| =: g,

and ∣∣ρN,i(t)∣∣ ≤ max
k≥1

σk =: σ.

Fix T > 0. It follows from the Arzela-Ascoli criterion and Lemma 7.7.2 that the se-

quence (X
(N)
i )N≥i is tight in C[0, T ]. Every subsequence has a convergent sub-subsequence

(X
(Nm)
i )m≥1. The same is true for the following sequence of C

(
[0, T ],R3k

)
-valued random

elements, for each k ≥ 1:

(X
(N)
i , Y

(N)
i ,WN,i, i = 1, . . . , k)N≥k. (7.38)

By the diagonal argument, for every subsequence (Nm)m≥1 there exists a sub-subsequence

(N ′m)m≥1 such that for every k ≥ 1, the following subsequence of (7.38)

(X
(N ′m)
i , Y

(N ′m)
i ,WN ′m,i, i = 1, . . . , k)m≥1
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converges weakly in C
(
[0, T ],R3k

)
. By Skorohod theorem, we can assume that the conver-

gence is, in fact, a.s. Let

Xi := lim
m→∞

X
(N ′m)
i , Yi := lim

m→∞
Y

(N ′m)
i , Wi := lim

m→∞
WN ′m,i, i ≥ 1

be the a.s. uniform limit on [0, T ]. Then Y = (Yi)i≥1 is an approximative version of the

infinite system of competing Brownian particles with parameters (gn)n≥1, (σ2
n)n≥1, (q±n =

1/2)n≥1. And Wi are i.i.d. standard Brownian motions. It suffices to show that X is a

version of the infinite classical system. Then, because the subsequence (Nm)m≥1 is arbitrary,

and because of the tightness established above, the proof will be completed.

Lemma 7.6.1. For almost every t > 0, as m→∞, we have a.s. for all i ≥ 1:

βN ′m,i(t)→ βi(t) :=
∞∑
k=1

1(Yk(t) = Xi(t))gk, and ρN ′m,i(t)→ ρi(t) :=
∞∑
k=1

1(Yk(t) = Xi(t))σk.

Proof. Let us prove the first convergence statement; the second statement is proved similarly.

By Lemma 7.3.5 and 3.5.3, the set N of times t ∈ [0, T ] when the system Y or a system

Y (N ′m) for some m ≥ 1 has a tie has Lebesgue measure zero. Fix ε > 0 and let U ⊇ N be an

open cover of N in [0, T ] with Lebesgue measure less than ε.

Claim: Fix i ≥ 1. Then there exists a (random) m0 such that for m ≥ m0, we have: for

all k ≥ 1,

{t ∈ [0, T ] \ U | Xi(t) = Yk(t)} ⊆
{
t ∈ [0, T ] \ U | X(N ′m)

i (t) = Y
(N ′m)
k (t)

}
.

Assuming we proved this claim, let us finish the proof of Lemma 7.6.1. Indeed, we have:

βN ′m,i(t) = βi(t) and ρN ′m,i(t) = ρi(t), t ∈ [0, T ] \ U , m > m0.

This proves that

βN ′m,i(t)→ βi(t) and ρN ′m,i(t)→ ρi(t) for t ∈ [0, T ] \ U as m→∞.
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Since the set U (which is random) can be taken with arbitrarily small Lebesgue measure,

this proves Lemma 7.6.1.

Now, let us prove this claim. Assume the converse. Then there exists a sequence (tj)j≥1

in [0, T ] ⊆ U and a sequence (mj)j≥1 such that mj →∞ and

Xi(tj) = Yk(tj), X
(N ′mj

)

i (tj) 6= Y
(N ′mj

)

k (tj).

Therefore, the particle with name i in the system X
(N ′mj

)
has rank other than k: either larger

than k, in which case we have:

X
(N ′mj

)

i (tj) ≥ Y
(N ′mj

)

k+1 (tj), (7.39)

or smaller than k, in which case

X
(N ′mj

)

i (tj) ≤ Y
(N ′mj

)

k−1 (tj). (7.40)

By the pigeonhole principle, at least one of these inequalities is true for infinitely many j.

Without loss of generality, we can assume that (7.39) holds for infinitely many j ≥ 1; the

case when (7.40) holds for infinitely many j ≥ 1 is similar. Again, without loss of generality

we can assume (7.39) holds for all j ≥ 1. There exists a convergent subsequence of (tj)j≥1,

because [0, T ] is compact. Without loss of generality, we can assume tj → t0. Since

X
(N ′mj

)

i (t)→ Xi(t) and Y
(N ′mj

)

k+1 (t)→ Yk+1(t)

uniformly on [0, T ], we have after letting j →∞:

Xi(t0) ≥ Yk+1(t0).

But we can also let j →∞ in Xi(tj) = Yk(tj). We get:

Xi(t0) = Yk(t0).

Thus, Yk+1(t0) ≤ Yk(t0). The reverse inequality always holds true. Therefore, there is a tie

at the point t0. But the set [0, T ]\U is closed, so t0 ∈ [0, T ]\U . This contradiction completes

the proof of the claim above, and with it Lemma 7.6.1.
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Now, let us return to the proof of Theorem 7.3.8. Fix t ∈ [0, T ]. Apply Lemma 7.7.3 to

show that in L2(Ω,F ,P), we have:∫ t

0

ρN ′m,i(s)dWN ′m,i(s)→
∫ t

0

ρi(s)dWi(s). (7.41)

Also, by Lebesgue dominated convergence theorem we have a.s.∫ t

0

βN ′m,i(s)ds→
∫ t

0

βi(s)ds. (7.42)

Finally, we have a.s.

X
(N ′m)
i (t) = xi +

∫ t

0

βN ′m,i(s)ds+

∫ t

0

ρN ′m,i(s)dWN ′m,i(s)→ Xi(t). (7.43)

From (7.43) and (7.42) we have that∫ t

0

ρN ′m,i(s)dWN ′m,i(s)→ Xi(t)− xi −
∫ t

0

βi(s)ds. (7.44)

But if a sequence of random variables converges to one limit in L2 and to another limit a.s.,

then there limits coincide a.s. Comparing (7.41) and (7.44), we get:

Xi(t) = xi +

∫ t

0

βi(s)ds+

∫ t

0

ρi(s)dWi(s),

which is another way to write the SDE governing the infinite classical system.

7.6.2 Proof of Lemma 7.3.5

Let D = {Y (t) has a tie}. Assume ω ∈ D, that is, the vector Y has a tie:

Yk−1(t) < Yk(t) = Yk+1(t) = . . . = Yl(t) < Yl+1(t). (7.45)

This tie cannot contain infinitely many particles, because this would contradict Lemma 7.3.4.

Fix a rational q ∈ (Yl(t), Yl+1(t)). By continuity of Yl and Yl+1, there exists M ≥ 1 such that

for s ∈ [t− 1/M, t+ 1/M ] we have: Yl(s) < q < Yl+1(s). Let

C(k, l, q,M) =

{
Yk−1(t) < Yk(t) = Yk+1(t) = . . . = Yl(t) < Yl+1(t),
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and Yl(s) < q < Yl+1(s) for all s ∈
[
t− 1

M
, t+

1

M

]}
.

We just proved that

P

(
D \

∞⋃
M=1

⋃
q∈Q

⋃
k<l

C(k, l, q,M)

)
= 0. (7.46)

Now let us show that for every k, l,M = 1, 2, . . . with k < l and for every q ∈ Q, we have:

P (D ∩ C(k, l, q,M)) = 0. (7.47)

Since the union in (7.46) is countable, this completes the proof. If the event C(k, l, q,M)

happened, then we have: ([Y (u+ t− 1/M)], 0 ≤ u ≤ 1/M) behaves as a system of l ranked

competing Brownian particles with parameters

(gn)1≤n≤l, (σ2
n)1≤n≤l, (q±n )1≤n≤l.

By Lemma 3.5.3, the probability of a tie at t = 1/M is zero, which proves (7.47).

7.6.3 Proof of Lemma 7.4.2.

We can rewrite the condition from (7.24) in an equivalent form:

∞∑
n=1

exp
(
−α(yn − y1)2

)
<∞ for all α > 0. (7.48)

Let us show that for a nondecreasing sequence y, this is equivalent to

∞∑
n=1

exp
(
−αy2

n

)
<∞ for all α > 0. (7.49)

Indeed, α(yn − y1)2 ≤ 2αy2
n + 2αy2

1, so (7.49) follows from (7.48). Conversely, αy2
n ≤ 2αy2

1 +

2α(yn − y1)2, so (7.48) follows from (7.49).
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7.6.4 Proof of Lemma 7.4.4.

(i) Use the Strong Law of Large Numbers, [110, Theorem 1.4.8] for independent zn v

E(λn), n ≥ 1. Using that Var zn = λ−2
n , we have:

∞∑
n=1

Var zn
βnλ−2

n

=
∞∑
n=1

1

βn
<∞.

For Sn := z1 + . . .+ zn, n ≥ 1, we have: ESn = Λn, and a.s.

cn :=
Sn − Λn

βnλ−2
n

→ 0.

Therefore, the sequence (cn)n≥1 is a.s. bounded: |cn| ≤ c, where c is random but finite. But

Sn = Λn + cnβnλ
−2
n , n ≥ 1. Therefore, Λ2

n − c2β2
nλ
−4
n ≤ S2

n ≤ Λ2
n + c2β2

nλ
−4
n . The rest is

trivial.

(ii) Let z′k = λkλ
−1zk v E(λ), λ = supn≥1 λn. We have: z1 + . . .+ zn ≥ z′1 + . . .+ z′n. By

the Law of Large Numbers, z′1 + . . .+ z′n = nλ
−1

(1 + o(1)) as n→∞. Therefore,

∞∑
n=1

e−α(z1+...+zn)2 ≤
∞∑
n=1

e−α(z′1+...+z′n)2 ≤
∞∑
n=1

e−α(λ
−2

(1+o(1))n2

<∞.

(iii) Recall that Var zn = 1/(2λ2
n). By [110, Theorem 1.4.1], we have: Sn−Λn is bounded.

The rest is trivial.

7.7 Appendix: Technical Lemmata

Lemma 7.7.1. Assume that (yn)n≥1 is a sequence of real numbers such that

yn →∞ and
∞∑
n=1

e−αy
2
n <∞ for α > 0.

Then for every v ∈ R and β > 0 we have:

∞∑
n=1

Ψ

(
yn + v

β

)
<∞.
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Proof. By [24, Chapter 7, Lemma 2], we have for v ≥ 1:

Ψ(v) ≤ 1√
2πv

e−v
2/2 ≤ 1√

2π
e−v

2/2.

But xn →∞ as n→∞, and so there exists n0 such that for n ≥ n0 we have:

yn + v

β
≥ 1.

Therefore, for n ≥ n0, we have:

Ψ

(
yn + v

β

)
≤ 1√

2π
exp

(
− 1

2β2
(yn + v)2

)
.

Using an elementary inequality (c+ d)2 ≥ c2/2− d2 for all c, d ∈ R, we get:

1

2β2
(yn + v)2 ≥ 1

4β2
y2
n −

1

2β2
v2.

Thus, ∑
n>n0

Ψ

(
yn + v

β

)
≤ 1√

2π

∑
n>n0

exp

(
− y2

n

4β2
+

v2

2β2

)
=

1√
2π

exp

(
v2

2β2

)∑
n>n0

exp

(
− y2

n

4β2

)
<∞.

Lemma 7.7.2. Take a sequence (Mn)n≥1 of continuous local martingales on [0, T ], such that

Mn(0) = 0, and 〈Mn〉t is differentiable for all n, and

sup
n,t

d〈Mn〉t
dt

= C <∞.

Then (Mn)n≥1 is tight in C[0, T ].

Proof. Use [73, Chapter 2, Problem 4.11] (with obvious adjustments, because the statement

in this problem is for R+ instead of [0, T ]). We need only to show that

sup
X∈G

E(Mn(t)−Mn(s))4 ≤ C0(t− s)2 (7.50)
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for all 0 ≤ s ≤ t ≤ T and for some constant C0, depending only on C and T . By the

Burkholder-Davis-Gundy inequality, see [73, Chapter 3, Theorem 3.28], for some absolute

constant C4 > 0 we have:

E(Mn(t)−Mn(s))4 ≤ C4E (〈Mn〉t − 〈Mn〉s)2 ≤ C4(C2(t− s))2 = C4C
4(t− s)2. (7.51)

Lemma 7.7.3. Take a sequence (ξn)n≥0 of adapted processes ξn = (ξn(t), 0 ≤ t ≤ T ),

which are bounded by a universal constant: |ξn(t)| ≤ C for all t ≥ 0 and n = 0, 1, 2, . . .

Take a sequence of standard Brownian motions (Wn)n≥0. Assume ξn → ξ0 a.s. for almost

all t ∈ [0, T ] as n → ∞, and Wn → W0 a.s. uniformly on [0, T ] as n → ∞. Then in

L2(Ω,F ,P), we have: ∫ T

0

ξn(t)dWn(t)→
∫ T

0

ξ0(t)dW0(t).

Proof. We can represent

E

(∫ t

0

ξndWn(t)−
∫ T

0

ξ0(t)dW0(t)

)2

≤ 2E

(∫ T

0

(ξn − ξ0)Wn(t)

)2

+ 2E

(∫ T

0

ξ0(t)d (Wn(t)−W0(t))

)2

≤=

∫ T

0

E (ξn(t)− ξ0(t))2 dt+ E

∫ T

0

ξ2
0(t)d〈Wn −W0〉t.

Now, the first term tends to zero because of Lebesgue dominated convergence theorem (ap-

plied twice, to the time integral and the expectation). The second term: since Wn −W0 is

a continuous square-integrable martingale, by Burkholder-Davis-Gundy inequalities, see [73,

Chapter 3, Theorem 3.28], we have:

E〈Wn −W0〉T ≤ C2E(Wn(T )−W0(T ))2. (7.52)

Here, C2 is some universal constant. (Actually, we can take C2 = 1, but this is not important

now.) But Wn(T )→ W0(T ) a.s. So to prove that

E(Wn(T )−W0(T ))2 → 0, (7.53)
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we need only show that the family ((Wn(T )−W0(T ))2)n≥1 is uniformly integrable. To this

end, it suffices to show that

sup
n≥1

E
[
(Wn(T )−W0(T ))2

]2
= sup

n≥1
E(Wn(T )−W0(T ))4 <∞.

But this is true, because (a+ b)4 ≤ 8(a4 + b4) for all a, b ∈ R, and therefore

E(Wn(T )−W0(T ))4 ≤ 8
(
EW 4

n(T ) + EW 4
0 (T )

)
= 8

(
3T 2 + 3T 2

)
= 48T 2 <∞.

Therefore, from (7.52) and (7.53) we get:

E〈Wn −W0〉T → 0.

Thus,

E

∫ T

0

ξ2
0(t)d〈Wn −W0〉t ≤ C2E〈Wn −W0〉T → 0.

The rest of the proof is trivial.
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Chapter 8

RELATED INFINITE SYSTEMS

8.1 Driving Functions Which Are Not Brownian Motions

This section is devoted to infinite ranked systems of competing particles when the driving

functions are not necessarily Brownian motions. We can alter the definition of competing

Brownian particles a bit, allowing for a few particles at the bottom to be driven by something

else rather than Brownian motions. We prove existence of such systems and state convergence

properties for their gap process.

Definition 36. Fix n0 ≥ 1 and take i.i.d. standard Brownian motions Bn, n > n0. Fix

parameters

gn ∈ R, σn > 0, n > n0,

as well as parameters of collision (q±n )n≥1, and take continuous functions

X1, . . . ,Xn0 : R+ → R,

such that

X1(0) ≤ . . . ≤ Xn0(0).

Take initial values yn, n > n0, such that

Xn0(0) ≤ yn0+1 ≤ yn0+2 ≤ . . .

Define

Xn(t) = yn + gnt+ σnBn(t), n > n0, t ≥ 0.

Suppose we have an R∞-valued process Y = (Y (t), t ≥ 0) with continuous adapted compo-

nents Yk = (Yk(t), t ≥ 0), k = 1, 2, . . ., and real-valued continuous adapted processes

L(k,k+1) = (L(k,k+1)(t), t ≥ 0), k = 1, 2, . . .
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such that the following is true:

Yk(t) = Xn(t) + q+
k L(k−1,k)(t)− q−k L(k,k+1)(t), k = 1, 2, . . . , t ≥ 0.

For notational convenience, as usual, we let L(0,1) ≡ 0. Suppose the conditions (i) and (iii)

of Definition 32 hold true. Then the process Y = (Y (t), t ≥ 0) is called a tweaked infinite

ranked system of competing Brownian particles with bottom driving functions X1, . . . ,Xn0 .

All other terminology is the same as in Definition 32.

Remark 29. The approximative version of a tweaked system is defined similarly to the approx-

imate version of an infinite ranked system of competing Brownian particles, see Definition 33.

To define it, we need a concept of systems of competing particles (not necessarily Brown-

ian), when driving functions are not necessarily Brownian motions, but arbitrary continuous

functions. This concept is defined in [100, Section 2, Definition 1].

First, we can state an existence result. The proof is similar to Theorem 7.3.1 from

Chapter 7 and is omitted.

Theorem 8.1.1. Suppose that

∑
n>n0

e−αy
2
n <∞ for all α > 0.

Suppose that

inf
n≥1

gn > −∞, sup
n≥1

σ2
n <∞.

Then the approximative version of the system from Definition 36 exists.

Now, consider the limiting behavior of the gap process. We find this behavior by compar-

ing tweaked and non-tweaked infinite systems of competing Brownian particles. We could

formulate a general theorem, but it would not be very illuminating. Instead, consider a

particular case. Let

n0 = 1, g2 = g3 = . . . = 0, σ2 = σ3 = . . . = 1, q±1 = q±2 =
1

2
.
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Then we have an infinite Atlas model with a general continuous function which drives the

bottom particle. Let us call this a tweaked infinite Atlas model with the bottom driving

function X1.

Theorem 8.1.2. Consider a tweaked infinite Atlas model (not necessarily an approximative

version) with the bottom driving function

X1(t) = B1(t) + f(t),

where B1 = (B1(t), t ≥ 0) is a standard Brownian motion, independent of B2, B3, . . ., and

f : R+ → R is a deterministic function such that

lim
T→∞

inf
t>s≥T

f(t)− f(s)

t− s
=: γ ∈ (0,∞]. (8.1)

Let Z = (Z(t), t ≥ 0) be the gap process.

(i) Suppose γ <∞. If ν is a weak limit point of Z(t) as t→∞, that is, if Z(tj)⇒ ν for

some increasing sequence tj →∞, then

ν � π2γ :=
∞⊗
n=1

Exp(2γ).

(ii) If γ =∞, then Z(t)⇒ 0 as t→∞.

Proof. Fix ε ∈ (0, γ). Then for some T > 0 and for all t > s ≥ T we have:

f(t)− f(s)

t− s
≥ γ − ε.

By the memoryless property (see [100, Remark 8]) the process Y (T + ·) is also a tweaked

infinite Atlas model with the bottom driving function X1(T + ·), and its gap process is

Z(T + ·). Since we are interested in the behavior of Z(t) as t→∞, without loss of generality

we can assume T = 0. Then for 0 ≤ s < t we have:

f(t)− f(s)

t− s
≥ γ − ε.
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As mentioned earlier, systems of competing particles (not necessarily Brownian) are discussed

in [100]. Now, for N ≥ 2 let Y (N) =
(
Y

(N)
1 , . . . , Y

(N)
N

)′
be the system of N competing

particles with parameters of collision q±n = 1/2, n = 1, . . . , N , and with the driving function

X (N) = (X1, y2 +B2, . . . , yN +BN)′ .

In effect, this is what we get when we take the system Y and remove all of the ranked particles

from above, except the first N ones: in other words, when we remove YN+1, YN+2, . . .. Let

Z(N) be the gap process for Y (N). By [100, Corollary 3.9, Remark 7], we get:

Z
(N)
k (t) ≥ Zk(t), k = 1, . . . , N − 1, t ≥ 0. (8.2)

Now, let

Y
(N)

=
(
Y

(N)

1 , . . . , Y
(N)

N

)′
be the ranked system of N competing Brownian particles with symmetric collisions, with

drift coefficients γ−ε, 0, . . . , 0 and unit diffusion coefficients, with driving Brownian motions

B1, . . . , BN , starting from Y
(N)

(0) = Y (N)(0). In other words, this is the system of N

competing particles with symmetric collisions and with the driving function

X (N)
(t) = ((γ − ε)t+B1(t), B2(t), . . . , BN(t))′ .

Let Z
(N)

=
(
Z

(N)

1 , . . . , Z
(N)

N−1

)′
be the corresponding gap process. We shall now compare

Z(N) and Z
(N)

. To this end, we compare

W(N) =
(
X (N)

2 −X (N)
1 ,X (N)

3 −X (N)
2 , . . . ,X (N)

N −X (N)
N−1

)′
and

W(N)
=
(
X (N)

2 −X (N)

1 ,X (N)

3 −X (N)

2 , . . . ,X (N)

N −X (N)

N−1

)′
.

We have:

W(N)

1 (t) = B2(t)−B1(t)− (γ − ε)t,

W(N)
1 (t) = B2(t)−X1(t) = B2(t)−B1(t)− f(t).
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Since

f(t)− f(s) ≥ (γ − ε)(t− s), 0 ≤ s ≤ t,

we have:

W(N)
1 (t)−W(N)

1 (s) ≤ W(N)

1 (t)−W(N)

1 (s).

And for k = 2, . . . , N − 1, we have:

W(N)
k (t)−W(N)

k (s) =W(N)

k (t)−W(N)

k (s).

Also, W(N)
k (0) =W(N)

k (0) for k = 1, . . . , N − 1. By [100, Theorem 3.1], we have:

Z
(N)
k (t) ≤ Z

(N)

k (t), k = 1, . . . , N − 1, t ≥ 0. (8.3)

Combining (8.2) and (8.3), we get:

Zk(t) ≤ Z
(N)

k (t), k = 1, . . . , N − 1, t ≥ 0.

But by Example 1,

Z
(N)

(t)⇒
N−1⊗
k=1

E
(

2(γ − ε)N − k
N

)
, t→∞.

So any weak limit point (Z1(t), . . . , Zk(t))
′ is stochastically dominated by

k⊗
j=1

E
(

2(γ − ε)N − j
N

)
.

But N > k is arbitrary. As N →∞, we have:

2(γ − ε)N − j
N

→ 2(γ − ε).

Thus,
k⊗
j=1

E
(

2(γ − ε)N − j
N

)
⇒

k⊗
j=1

E (2(γ − ε)) , N →∞.

Therefore, any weak limit point of (Z1(t), . . . , Zk(t))
′ is dominated by

k⊗
j=1

E (2(γ − ε)) .
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Snce ε > 0 is arbirary, any weak limit point of (Z1(t), . . . , Zk(t))
′ is dominated by

k⊗
j=1

E (2γ) .

This is true for all k = 1, 2, . . ., which proves (i). Part (ii) is similar.

Corollary 8.1.3. Consider a tweaked infinite Atlas model with the bottom driving function

X1(t) = B1(t) + f(t),

where f : R+ → R is a deterministic function which is continuous and differentiable on R+,

and

lim
T→∞

f ′(T ) = γ ∈ (0,∞].

Then conclusions of Theorem 8.1.2 hold true.

Example 12. Suppose f(t) = t2, that is, the bottom particle has drift t2 instead of a linear

drift. Then

Z(t)⇒ 0, t→∞.

8.2 Two-sided infinite systems of competing Brownian particles

In this subsection, we consider infinite systems of competing Brownian particles indexed by

n ∈ Z instead of n = 1, 2, . . .. We could not prove an existence theorem for these systems,

but we show some convergence results for the gap process, assuming a copy of such system

exists.

Definition 37. Fix parameters

(gn)n∈Z, (σ2
n)n∈Z, (q±n )n∈Z

with

σn > 0, 0 ≤ q±n < 1, q+
n+1 + q−n = 1, n ∈ Z.
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Let Bn, n ∈ Z, be i.i.d. standard Brownian motions. Take an RZ-valued process Y =

(Y (t), t ≥ 0) with continuous adapted components Yn = (Yn(t), t ≥ 0), n ∈ Z, and real-

valued continuous adapted processes L(n,n+1) = (L(n,n+1)(t), t ≥ 0), such that:

(i) Yn(t) ≤ Yn+1(t), n ∈ Z, t ≥ 0;

(ii) Yn(t) = Yn(0) + gnt+ σnBn(t) + q+
nL(n−1,n)(t)− q−nL(n,n+1)(t);

(iii) L(n,n+1)(0) = 0, L(n,n+1) is nondecreasing and can increase only when Yn(t) = Yn+1(t).

Then the process Y is called a two-sided infinite ranked system of competing Brownian

particles with drift coefficients (gn)n∈Z, diffusion coefficients (σ2
n)n∈Z, and parameters of colli-

sion (q±n )n∈Z. We say that Y starts from Y (0) and has driving Brownian motions Bn, n ∈ Z.

The component Yn is called the nth ranked particle. The process L(n,n+1) is called the local

time of collision between Yn and Yn+1. The RZ
+-valued process

Z = (Z(t), t ≥ 0), Z(t) = (Zn(t))n∈Z, Zn(t) = Yn+1(t)− Yn(t),

is called the gap process.

Assume a copy of such two-sided system exists. For integers M < N , let

Y (M,N) =
(
Y

(M,N)
M , . . . , Y

(M,N)
N

)′
be a finite system of N −M + 1 competing Brownian particles with parameters

(gn)M≤n≤N , (σ2
n)M≤n≤N , (q±n )M≤n≤N ,

with driving Brownian motions BM , . . . , BN , starting from (YM(0), . . . , YN(0))′. Let

Z(M,N) =
(
Z

(M,N)
M , . . . , Z

(M,N)
N−1

)′
be the corresponding gap process. Then by [100, Corollary 3.10] we have: for t ≥ 0 and

M ≤ k < N ,

Zk(t) ≤ Z
(M,N)
k (t).

Moreover, for M ′ ≤M ≤ k < N ≤ N ′, t ≥ 0, we have:

Z
(M ′,N ′)
k (t) ≤ Z

(M,N)
k (t).
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Suppose for sufficiently small M and sufficiently large N (say, for M ≤M0 and N ≥ N0) the

gap process Z(M,N) has a stationary distribution π(M,N). A necessary and sufficient condition

for this is given in Proposition 3.5.1. Let

(ξ
(M,N)
M , . . . , ξ

(M,N)
N )′

be F0-measurable, and distributed as π(M,N).

Lemma 8.2.1. For every k ≤ l ∈ Z, the random vector(
ξ

(M,N)
k , . . . , ξ

(M,N)
l

)′
stochastically decreases as M decreases, and as N increases. More precisely, for M ′ ≤M ≤

k ≤ l < N ≤ N ′, (
ξ

(M ′,N ′)
k , . . . , ξ

(M ′,N ′)
l

)′
�
(
ξ

(M,N)
k , . . . , ξ

(M,N)
l

)′
.

The proof is similar to that of Lemma 7.4.1. Possibly by changing the probability space,

we can compare ξ
(M,N)
k a.s. instead of stochastically. Let

ξk := lim
M→−∞
N→∞

ξ
(M,N)
k , k ∈ Z.

Denote by π the distribution of the sequence (ξk)k∈Z. For example, if the skew-symmetry

condition holds:

(q−k−1 + q+
k+1)σ2

k = q−k σ
2
k+1 + q+

k σ
2
k−1, k ∈ Z,

then

π(M,N) =
N−1⊗
k=M

Exp
(
λ

(M,N)
k

)
,

where λ
(M,N)
k > 0, k = M, . . . , N − 1 are parameters. Since by Lemma 8.2.1 we have: for

M ′ ≤M ≤ k < N ≤ N ′,

ξ
(M ′,N ′)
k = E(λ

(M ′,N ′)
k � ξ

(M,N)
k v E

(
λ

(M,N)
k

)
,
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then

λ
(M ′,N ′)
k ≥ λ

(M,N)
k .

So there exists

λk := lim
M→−∞
N→∞

λ
(M,N)
k ∈ (0,∞], k ∈ Z.

If for all k ∈ Z we have: λk <∞, then

π =
⊗
k∈Z

Exp(λk). (8.4)

If for some k we have: λk = ∞, then we can still write (8.4), assuming that Exp(∞) = δ0,

the Dirac point mass at zero.

The main result of this section is as follows. (The proof of this result is similar to

Theorem 7.4.3 and is omitted.)

Theorem 8.2.2. Consider a two-sided infinite ranked system of competing Brownian par-

ticles, as described in Definition 37. Let Z be its gap process. Suppose for M ≤ M0 and

N ≥ N0 the gap process Z(M,N) has a stationary distribution π(M,N), so that we can construct

a distribution π, as above.

(i) Then the family of RZ
+-valued random variables Z(t), t ≥ 0, is tight in RZ in the sense

of componentwise convergence, and any weak limit point of Z(t) as t → ∞ is stochastically

dominated by π.

(ii) In particular, if π is a Dirac point mass at 0 ∈ RZ, then Z(t)⇒ 0 as t→∞.

Corollary 8.2.3. If π = δ0, where 0 ∈ R∞, then Z(t)⇒ 0 as t→∞.

Example 13. Consider the case of symmetric collisions: q±n = 1/2, n ∈ Z, σn = 1, n ∈ Z,

and

gn =

0, n > 0;

1, n ≤ 0.
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This is similar to the infinite Atlas model, only now there are infinitely many Atlas particles

with drift 1 at the bottom of the system. The skew-symmetry condition is true, and

π(M,N) =
N⊗

k=M

Exp(λ
(M,N)
k ).

Try to find the parameters λ
(−N,N)
k :

gk =
1

k +N + 1
(g−N + . . .+ gk) =

1, k ≤ 0;

N+1
k+N+1

, k ≥ 1.

In particular,

gN =
N + 1

2N + 1
.

For k = −N, . . . , N ,

λ
(−N,N)
k =


2(N+1+k)N

2N+1
, k = −N, . . . , 0;

2(N−k)(N+1)
2N+1

, k = 1, . . . , N.

As N →∞, we have: λ
(−N,N)
k →∞. So π = δ0 is a Dirac point mass at 0 ∈ R∞, and

Z(t)⇒ 0, t→∞.

Note that we did not prove existence and uniqueness for this two-sided system. We just

noted that if it exists, then for every copy the gap process weakly converges to 0.

8.3 Construction of an Infinite-Dimensional SRBM in the Orthant

Definition 38. A table M = (Mij)i,j≥1 of real numbers is called an infinite-size matrix. It

is called banded if each row and each column contains only finitely many nonzero elements.

For every N ≥ 1, let [M ]N := (Mij)1≤i,j≤N be the corner principal submatrix of size N ×N

of an infinite-size matrix M . An infinite-size matrix M is called completely-S if for every

N ≥ 1, the matrix [M ]N is completely-S. An infinite-size matrix M = (Mij)i,j≥1 is called a

Z-matrix if all its off-diagonal entries are nonpositive: Mij ≤ 0, i 6= j. For M = (Mij)i,j≥1,

let M ′ := (Mji)i,j≥1 be the transpose of M ; if M = M ′, then M is called symmetric. For
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a vector a = (a1, a2, . . .)
′ ∈ R∞ and an integer N ≥ 1, let [a]N := (a1, . . . , aN)′ ∈ RN . We

shall call a ∈ R∞ banded if only finitely many of its components are nonzero. We denote

the infinite-size identity matrix by I∞ := (δij)i,j≥1. We shall call an infinite-size matrix A

symmetric positive definite if for all N ≥ 1 the matrix [A]N is symmetric positive definite.

If M1,M2 are infinite-size matrices and at least one of them is banded, then we can define

the matrix product M1M2 in the usual way. Similarly, if M is an infinite-size matrix and

a ∈ R∞ is a vector, and at least one of them is banded, then the product Ma is well-defined.

In both cases, if both M and a are banded, then the product is also banded.

Throughout this section, we denote S := R∞+ and Si := {x ∈ S | xi = 0}, i ≥ 1.

Definition 39. Take a symmetric positive definite infinite-size matrix A and a vector µ ∈

R∞. A (one-sided) infinite-dimensional (Ft)t≥0-Brownian motion B = (B(t), t ≥ 0) with

drift vector µ and covariance matrix A is an R∞-valued process B(t) = (B1(t), B2(t), . . .)′

such that for every N ≥ 1, [B]N = ([B(t)]N , t ≥ 0) is an N -dimensional Brownian motion

with drift vector [µ]N and covariance matrix [A]N .

It is easy to construct such Brownian motion from infinitely many i.i.d. copies W1,W2, . . .

of standard Brownian motions in one dimension:

Bk(t) =
k∑
j=1

ckjWj(t), k ≥ 1, t ≥ 0,

where the coefficients ckj are to be determined: first c11, then c21, c22, etc. Then the matrix

C = (ckj) is a “square root” of A.

Definition 40. Take an infinite-size banded reflection matrix R. Fix T ≥ 0. Assume

X : [0, T ]→ R∞ is a continuous function. A solution to the Skorohod problem in the positive

orthant S with reflection matrix R and input function X is a pair (Y ,Z) of continuous

functions [0, T ]→ S which satisfy the following conditions:

(i) for every t ∈ [0, T ] we have: Z(t) = X (t) +RY(t) ∈ S;
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(ii) for every i ≥ 1, the function Yi is nondecreasing, Yi(0) = 0, and
∫∞

0
Zi(t)dYi(t) = 0.

The last equality shows that Yi can increase only when Zi = 0, that is, when Z is on the

face Si of the boundary ∂S.

A similar definition can be made for R+ instead of [0, T ].

Let us describe the parameters of an SRBM in infinite dimensions. Let R,A be infinite-

size matrices such that R is a banded M-matrix with ones on the main diagonal, and A

is symmetric positive definite. Let µ ∈ R∞. Assume we have a filtered probability space

(Ω,F , (Ft)t≥0, P) with the filtration satisfying the usual conditions.

Definition 41. A continuous adapted S-valued process Z = (Z(t), t ≥ 0) is an SRBM in

the infinite-dimensional orthant S with reflection matrix R, drift vector µ and covariance

matrix A, starting from x ∈ S, shortly SRBM∞(R, µ,A), if there exists another R∞-valued

continuous adapted process Y = (Y (t), t ≥ 0) such that: (Y, Z) is a solution to the Skorohod

problem in the orthant S with reflection matrix R and input function B, where B is an

infinite-dimensional Brownian motion with drift vector µ and covariance matrix A.

For finite systems of competing Brownian particles, the gap process is an SRBM in a

finite-dimensional orthant. Similar connection exists in infinite dimensions.

Lemma 8.3.1. (i) Take an infinite ranked system of competing Brownian particles with

parameters

(gn)n≥1, (σ
2
n)n≥1, (q

±
n )n≥1. (8.5)

Then the gap process is an SRBM in the infinite-dimensional orthant S with reflection matrix

R =


1 −q−2 0 . . .

−q+
2 1 −q−3 . . .

0 −q+
3 1 . . .

...
...

...
. . .

 ,
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covariance matrix

A =


σ2

1 + σ2
2 −σ2

2 0 . . .

−σ2
2 σ2

2 + σ2
3 −σ2

3 . . .

0 −σ2
3 σ2

3 + σ2
4

...
...

...
. . .


and drift vector

µ = (g2 − g1, g3 − g2, . . .)
′.

(ii) Conversely, suppose we constructed a process Z = (Z(t), t ≥ 0), which is an SRBM

in the infinite-dimensional orthant S with the parameters above. Then we can construct

a version Y = (Y (t), t ≥ 0) of an infinite system of competing Brownian particles with

parameters (8.5) such that Z is the gap process for Y .

Proof. (i) is straightforward.

(ii) By definition, Z satisfies the equation: for every k = 1, 2, . . .

Zk(t) = zk + (gk+1 − gk) t+Bk(t) + Lk(t)− q−k Lk−1(t)− q+
k+1Lk+1(t).

Here, Lk is a continuous real-valued nondecreasing process with Lk(0) = 0 which can increase

only when Zk = 0. But we can construct the process B = (Bk)k≥1 as follows:

Bk(t) = σk+1Wk+1(t)− σkWk(t), t ≥ 0, k = 1, 2, . . .

where W1,W2, . . . are i.i.d. standard Brownian motions. Let

yk = z1 + . . .+ zk, k = 0, 1, 2, . . . ,

and define

Yk(t) = yk + gkt+ σkWk(t) + q+
k Lk−1(t)− q−k Lk(t), t ≥ 0, k = 1, 2, . . .

It is easy to check that Y is a required infinite system and Z is the gap process for Y .

We can apply the Harrison-Reiman technique from [51] to prove strong existence and

pathwise uniqueness.



214

Theorem 8.3.2. Assume µn and ann grow polynomially with respect to n. Let

R =


1 −q−2 0 . . .

−q+
2 1 −q−3 . . .

0 −q+
3 1 . . .

...
...

...
. . .

 ,

where q±k > 0, q−k + q+
k+1 = 1, and q+

k ≥ q > 1/2 for all k ≥ 1. Then SRBM∞(R, µ,A) exists

and is unique in the strong sense, regardless of the initial conditions.

Proof. Take a sequence α = (αn)n≥1 is a sequence of positive numbers. Consider the space

Λα =

{
x = (xn)n≥1 ∈ R∞ | ‖x‖α :=

∞∑
n=1

αn|xn| <∞

}
.

This is a Banach space with the norm ‖·‖α.

Lemma 8.3.3. Let

B = (Bk)k≥1, Bk = (Bk(t), t ≥ 0), k ≥ 1,

be i.i.d. standard one-dimensional Brownian motions. Consider an infinite-size banded ma-

trix Σ such that for every N ≥ 1, the matrix [Σ]N is nonsingular. Take µ ∈ R∞. Consider

the process

X = (X(t), t ≥ 0), X(t) = µt+ ΣB(t), t ≥ 0.

This process is Λα-valued if
∞∑
n=1

αn (
√
ann + |µn|) <∞, (8.6)

where A = ΣΣT = (aij)i,j≥1.

Proof. Note that

Xn(t) = µnt+
√
annWn(t), n ≥ 1, t ≥ 0,

where Wn = (Wn(t), t ≥ 0), n ≥ 1, are standard one-dimensional Brownian motions (not

necessarily independent). So

E‖X(t)‖α ≤
∞∑
n=1

αn
(
|µn|t+

√
annt

)
<∞.
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Definition 42. A linear mapping F : R∞ → R∞ is called a contraction of Λα if it maps Λα

into itself and for every x ∈ Λα, we have:

‖F (x)‖α ≤ k‖x‖α,

where k ∈ (0, 1) is a constant.

Take a probability space on which infinitely many i.i.d. standard Brownian motions are

defined.

Lemma 8.3.4. Consider an SRBM∞(R, µ,Σ) with A = ΣΣT , where R,Σ are infinite-size

banded matrices such that R has units on the main diagonal and nonpositive elements outside

it, and for every N ≥ 1 [R]N is a nonsingular M-matrix and [Σ]N is nonsingular. Assume

there exists a sequence α = (αn)n≥1 of positive real numbers such that (8.6) holds and the

mapping

x 7→ (I∞ −RT )x

is a contraction of Λα. Then for every initial condition x ∈ S (even for x = 0!), there exists

a unique strong version of an SRBM∞(R, µ,Σ).

The proof emulates the proof of [51, Theorem 1] and is therefore omitted.

It is natural to try to find αn = λn, where

λ =

√
1− q
q
∈ (0, 1), αn = λn, k = 2

√
q(1− q).

This completes the proof of Theorem 8.3.2.
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[6] R. F. Bass and É. Pardoux. Uniqueness for diffusions with piecewise constant coeffi-
cients. Probab. Theory Related Fields, 76(4):557–572, 1987.

[7] Andrei N. Borodin and Paavo Salminen. Handbook of Brownian motion—facts and
formulae. Probability and its Applications. Birkhäuser Verlag, Basel, second edition,
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