
Accessible LATEX Mathematics

Don Massie∗, Andrey Sarantsev†

June 26, 2019

Abstract

In this document, we explain how to make math content produced from a LATEX
document accessible for visually impaired students. We outline some possible solutions,
in particular converion of LATEX documents to an accessible HTML-MathJax format.

1 Preliminaries

For the purposes of this discussion, a document is considered accessible if it satisfies two
requirements: (a) it can adequately be read by assistive technologies, such as screen readers,
used by visually impaired people; (b) it is tagged: all headings, tables, lists, pictures, graphs,
and other special objects must be identified as such, and all pictures or graphs must have
captions or alternative text.

Accessibility can be measured by automated tools which rate the degree of tagging and
other usability supports. One of them is Ally, pre-installed in Canvas, which is the University
of Nevada, Reno (UNR) learning management system. Another is WAVE, available as an
extension of browsers. The most important way to test, however, is to use an actual screen
reader: JAWS (commercial), NVDA (free open-source), or others.

There are tools to make Word, PDF, or PowerPoint documents accessible. For example,
in (commerical) Adobe Acrobat Pro there are tools called Accessibility and the Action

Wizard, which facilitate making many types of content accessible. These tools are not in the
free Adobe Acrobat Reader DC, but they are freely available for UNR faculty.

However, mathematics (and other disciplines that use many formulas) presents special
problems. Indeed, most math content is created in LATEX. This is a publishing system based
on TEX markup language, which is used for typesetting mathematics formulas. It is widely
used in Mathematics, Computer Science, Statistics, Physics, Chemistry, Biology, Economics,
Finance, and other disciplines with complicated formulas. LATEX is not WYSIWYG (what
you see is what you get): insteadm one types the text with commands (all starting from
backslash \) which generate math symbols and formatting, in a special document .tex,
which is then compiled. The output is PDF.

∗Teaching and Learning Technologies, donmassie@unr.edu
†Department of Mathematics and Statistics, asarantsev@unr.edu



TEX language was created by Donald Knuth in 1978 and is still very widely used. Mathe-
maticians and other aforementioned disciplines rarely use Word, OpenOffice, or other WYSI-
WYG editors, because LATEX has much higher quality of typesetting.

LATEX is a free, open-source software that works equally well on common operating
systems. It is available on multiple web sites, including https://www.latex-project.org/.
One can also use the online compilator Overleaf to convert from .tex to .pdf. There are
other publishing systems based on TEX, but LATEX is used overwhelmingly. In this review,
we shall use TEX and LATEX interchangeably. Below is an example of a very short LATEX
file, let us call it test.tex:

LATEX Code

\documentclass{article}
\usepackage{amsfonts}
\begin{document}
Hello, world!

$x + y = \alpha$
$$(x-y)\cdot (x+y) = x^2 - y^2$$

\end{document}

Output

Hello, world!
x+ y = α

(x− y) · (x+ y) = x2 − y2

The output is in test.pdf. The dollar signs create a math mode between them. In
it, one can use math commands, such as the one which produces the greek letter α. The
text of .tex document outside of the math mode is called the text mode. The usepackage

command adds special packages which are not part of the core LATEX but are often useful; the
amsfonts package adds special fonts created by the AMS (American Mathematical Society).
These two web sites: CTAN and TUG, are repositories of TEX and LATEX online. They
serve as reference places for the TEX global community.

2 Main Problem

This language cannot, however, create an accessible PDF. The PDF output is not tagged,
and therefore not accessible. To learn more about this, search for the question: How can I
create math and science documents that are accessible to students with visual impairments?
on the web page https://www.washington.edu/doit/ (University of Washington, Seattle).

Our goal is to find a way to make mathematics typed in TEX, as a PDF or otherwise,
accessible. Our target audience is an average professor, researcher, or graduate student.

2



These people are familiar with their research area, with at least basics of scientific publishing,
and have a basic knowledge of LATEX. Many in our target audience know basic HTML. This
is the markup language used by all browsers to create Web pages; see more in Section 3.2.
We assume knowledge of HTML is good enough to write simple personal pages. We do not
assume knowledge of CSS (Cascading Style Sheets), a more sophisticated technique on top
of HTML which enables different styles.

Such users often do not know command line interface cmd. They do not want to learn
a new language (programming or markup), or a new piece of software. In general, they are
busy with research and teaching, and therefore do not wish to invest a lot of time and effort.

It is surprisingly hard to find a way to make formulae, equations, and special characters
accessible. It seems that in the TEX community, this is still an active research and devel-
opment topic. The technology is relatively unfinished, and not standardized. One needs to
look on online forums, most importantly TEX Stack Exchange (a Q&A service developed
specifically for TEX users), and Stack Overflow (a general Q&A forum for information
technology and computer science).

We found that there is no universally good solution for an accessible output from LATEX.
However, in Section 3 we describe in detail one method which we found the best for making
mathematical content work with screen readers. In Section 4, we describe issues arising from
such conversion, and whether they require manual intervention. Finally, in Section 6, we
mention several potential paths which we tested and did not find satisfactory. However, they
might be useful for more sophisticated users, or for subsequent research on this topic.

3 Our Solution: LATEX to HTML-MathJax

In this section, we focus on the process that seems the most promising: converting LATEX
documents to HTML (Hyper Text Markup Language) format, which can be read by browsers
such as Chrome or Firefox. There is a MathJax plugin for HTML, developed by AMS
(American Mathematical Society), in part to make mathematics accessible. MathJax can
read LATEX commands and formulas in ‘math mode’ as if it were LATEX itself. In the rest
of Section 3, we describe in more detail the HTML format and MathJax plugin. We choose
the Pandoc online converter for its simplicity. Then we describe which features of LATEX can
and which cannot be translated to the HTML-MathJax.

3.1 Industry motivation

An additional motivation for converting LATEX to HTML-MathJax arises from reviewing
documents published by Elsevier, Springer, Taylor & Francis (leading publishing houses).
They use it to make mathematics accessible in academic monographies, textbooks and jour-
nals. Given that they publish hundreds of journals, it is likely that they have a professional
converting program. We do not have such resources. However, later we describe some free
online tools, and how to overcome their limitations.

Other publishing houses and online journal repositories: Project Euclid and Jstor, do
not use this dual system. However, the fact that at least some leading publishers use this
technology encourages us.

3



3.2 HyperText Markup Language (HTML)

HTML is the markup language used by all browsers to create Web pages. The newest version
is called HTML5; by default we refer to this version. Its commands are called tags. These
tags correspond to the tags in PDF documents mentioned in the beginning of Section 1,
which are crucial for accessibility.

HTML can include scripts, which add functionality and roughly correspond to using
additional packages in LATEX. An example:

HTML Code

<html>

<head>

<script type = ‘‘[type]’’ [link]> </script>

<title> Example </title>

</head>

<body>

<font face = ‘‘arial’’ size = ‘‘+1’’>

<h1> Main Title </h1>

<h2> Details </h2>

<p> Hello, world! </p>

</body>

Output

Example1

Main Title

Details

Hello, world!

We used the font Arial because it is sans-serif; the default font for HTML is Times New
Roman, which has serifs. Sans-serif fonts are recommended to ease the cognitive burden for
people with certain learning and/or visual impairments.

Remark 1. Usually, a heading of the first order coincides with the title. In this case, instead
of ‘Example’, we shall have ‘Main Title’.

HTML has hyperlinks: <a href = ‘‘https://www.unr.edu/’’> UNR </a> is the link to
the UNR web site. To make content within your web page linkable, create an anchor: <a

href = ‘‘[URL of this link]’’> [descriptive name of your content] </a>, then re-
fer to this anchor as [web-page-address]# [URL of this link].

1This is the text shown on the tab of the web page.

4



3.3 MathJax

MathJax is a script in HTML that can visualize math formulas in a browser as LATEX
would. It was created by the American Mathematical Society (AMS) for screen-readers and
accessibility, see https://www.mathjax.org/. It can be enabled by adding to the preamble
the following text:

<script src="https://cdnjs.cloudflare.com/ajax/libs/mathjax/ 2.7.5/

MathJax.js?config=TeX-MML-AM_CHTML"> </script>

To use $ for formulas in MathJax, one should add to the preamble the following script:

<script type = ‘text/x-mathjax-config’ MathJax.Hub.Config({

tex2jax: {inlineMath: [[’$’,’$’], [’\\(’,’\\)’]]}});}> </script>

We do not need this latter preamble if we use Pandoc.

3.4 Converters

The markup languages LATEX and HTML are different; they format tables, sections, lists,
etc. differently. One needs a translator between them, and they are available: tex4ht,
htlatex, LATEX2HTML, Hevea, and others. See https://texfaq.org/FAQ-LaTeX2HTML for
more information. They seem to do a good job, but require using the command line cmd,
since these commands are not built in the usual TEX interface such as TEXworks. We did
not assume audience familiarity with this, though it could greatly simplify this process.

One commercial converter which seems to be good is MicroPress TeXpider. It is mar-
keted as A tool that really works, which is a big claim in this area. Unlike other programs
mentioned above except for Adobe Acrobat Pro, this converter is not free, but costs $100
for individuals. We did not test this tool. It remains to be seen how accessible and screen-
readable these outputs are.

3.5 Pandoc: Our Choice

One online tool that we found satisfactory is Pandoc: https://pandoc.org. Go to ‘Demos’,
then ‘Try Pandoc online’. In the original window (visual left side), choose LATEX format. In
the target window (visual right side), choose HTML5. Then copy the body of your LATEX
document to the left-side window, and click ‘convert’. You might need to copy this bit by
bit, because there is a limit on the document size. The resulting math mode in HTML is
compatible with MathJax.

This converter creates <span class="math inline">*</span> around the inline math
mode (where the asterisk stands for LATEX math content), converting from single dollar signs
in LATEX; and <span class="math display">*</span> around the display math mode,
converting from double dollar signs in LATEX.

With the second preamble above, one need not worry about single and double dollar signs,
as well as \[ *\], since MathJaX will automatically recognize them as inline or display math
mode. For a LATEX document with plain text outside of dollar signs, simply copy-paste this
LATEX in HTML, without Pandoc, and put the two preambles above it.

5



3.6 Summary

Create HTML-MathJax documents by putting scripts mentioned above in the
preamble, and (if necessary) converting the body of LATEX to HTML via Pandoc.

This produces a good-looking, screen-readable, accessible document. In our tests, JAWS
(a common screen reader) was able to read much of text and math.

However, our job is not finished. This conversion process can do most things, but not
all. Below, we describe some of the possible issues, and whether they are actually solved by
Pandoc or need to be edited manually. Some of them apply more to research papers rather
than short lecture notes or homework/exam files.

4 Pandoc Issues

4.1 Sections and Headings

LATEXuses commands section, subsection, and subsubsection. This corresponds to the
document class article; in the class book we also have command chapter. HTML uses
headings: <h1> for main topics, <h2> for subtopics, up to <h6> for sequential categories.
Often, <h1> is the title of the page. Pandoc converts them well, and no manual work is
required (unless the author wants to change the size of headings).

4.2 Lists

Both markup languages have commands for numbered lists and bulleted lists. Pandoc works
well here, too. No manual work is required, except for the following case: LATEX package
enumitem allows one to produce lettered lists, with [a], [b], [c] items. Since this requires a
special package, we doubt that Pandoc will covert this to HTML format. In HTML, there
is an option for bulleted lists with bullet points having special shapes, such as squares. In
our tests, Pandoc failed to adequately convert similar LATEX lists, where changing the shape
of this bullet is more difficult. It can be done manually in HTML, if desired. However, this
level of control is often optional and not essential in practice.

4.3 Metadata

LATEX has special commands for authors, title, keywords, abstract, and AMS subject clas-
sification. Pandoc does not translate them, but simply removes them. The author must
reproduce these in HTML-MathJax manually. However, these are not required for screen
reader accessibility (except the title).

4.4 Images

For external images attached to LATEX such as .pdf, .png, .jpg, Pandoc transfers LATEX
pictures commands to the HTML commands: the LATEXenvironment figure is converted
into HTML tag <figure>, and the LATEXenvironment figure* the (star means no automatic
numbering) is converted into <pic>. Unfortunately, there is no way to convert automatic

6



LATEX numbering to HTML. One should do it manually, as for theorems. Two- or many-
part pictures in LATEX are converted into separate pictures in HTML. One can draw simple
pictures in LATEX itself. We select two well-known LATEX packages.

1. Xy-pic. This package is good for diagrams. MathJax can be made Xy-pic friendly
with XyJax, http://sonoisa.github.io/xyjax/xyjax.html. But this software is
still under development. More importantly, it requires the use of command prompt,
which we assumed the audience does not know.

2. TikZ. This is a powerful package that allows the user to draw the following types
of pictures in LATEX: arrows, circles, nodes, other geometric figures. However there is
no way to make TikZ MathJax-compatible. We would recommend creating separate
pictures in JPG or PDF from TikZ or Xy-pic, and then include them in the HTML
document.

4.5 Equation Numbering

As discussed before, Pandoc does a great job converting math to a MathJax-readable form
inside an HTML document. However, a user needs to do some manual work to convert
references to equations. In LATEX, we have:

LATEX Code

\begin{equation}
\label{this}
(a + b)^2 = a^2 + 2ab + b^2

\end{equation}
We refer to equation \eqref{this}.

Output

(a+ b)2 = a2 + 2ab+ b2 (1)

We refer to equation (1).

Pandoc HTML output

<p>

<span class="math display">\[\label{this}(a+ b)2 = a2 + 2ab+ b2\]</span>
We refer to equation

<a href="#this" data-reference-type="eqref" data-reference="this">[this]</a>.

</p>

7



The number (1) would not appear. We need to manually change [this] to $\eqref{this}$.
Then references will correctly work in HTML-MathJax. There is a way in LATEX to make
references dependent on a section; for example, the second equation in the third section will
be numbered as (3.2). We did not test this in Pandoc; this is left for future research.

4.6 Tables

LATEX and HTML have different commands for tables, but Pandoc seems to convert them
very well. No manual work is required.

4.7 Theorems, Definitions, and Other Environments

In mathematics, theorems, lemmas, definitions etc. are formatted as separate text blocks,
and their names are in boldface. In addition, theorems and lemmas (but not definitions)
have statements which are italicized. In LATEX, there are built-in environments: pieces of
text which have special formatting inside. We already saw the environment equation which
creates math mode in a separate line. Here is an example of the environment theorem. The
LATEX command label has an argument, which is the label assigned to this theorem. This
is very similar to the concept of an anchor in HTML. We refer to this label via the LATEX
command ref.

LATEX Code

\begin{theorem}
\label{that}
We have: $x + y = z$.

\end{theorem}
We refer to Theorem \ref{that}.

Output

Theorem 1. We have: x+ y = z.

We refer to Theorem 1.

Remark 2. The command ref, unlike eqref, does not provide brackets around the number.

In the LATEX preamble, put \newtheorem{theorem}[Theorem] to use this environment.
The process is similar for lemma, proposition, definition, example, remark, and other
commonly used statement environments (environments used to format statements). Note
that text is commonly italicized inside the theorem-type environments: theorem, lemma,
proposition, but not inside other environments, mentioned above.

8



Theorems and other types of environments are automatically numbered: the second
environment theorem produces Theorem 2. One can number environments of different
types together, and include the section number in the theorem number (Theorem 3.2).

Unfortunately, Pandoc simply removes these theorem environment commands, because it
cannot process them. The only way is to manually create a special heading for the theorem,
and to manually italicize the internal text in HTML.

Remark 3. One can use CSS to automate formatting theorems, definitions, and other en-
vironments, see http://felix11h.github.io/blog/mathjax-theorems. However, we as-
sumed that our audience does not know CSS. Regardless, using CSS does not support auto-
matic numbering and references: One must do references manually, using anchors described
in subsection 3.2 <a link = ‘‘[text]’’> and <a href = ‘‘[text]’’>

4.8 Macros

LATEX allows users to define short versions of commands and even new commands: Instead
of typing \Rightarrow for the symbol ⇒, we write \newcommand{\Ra}{\Rightarrow} in
the preamble, and then continue typing \Ra in the main text. To replicate this in HTML-
MathJax, please type

<div style="display:none">

\(
\newcommand{\Ra}{\Rightarrow}
\)
</div>

This HTML code will not be displayed on the web page, but will be treated as a macro
by MathJax. The same can be done for more complicated commands with arguments, such
as \norm{a} with an argument a, defined as \newcommand{\norm}[1]{\lVert#1\rVert}.
This gives us ‖a‖. This method works for the command \DeclareMathOperator, which is
used when we wish to type for example ‘exp’, not ‘exp’, in math mode. This last exp looks
like italics exp, but actually these are letters exp in math mode.

4.9 Bibliography

LATEX can automatically create bibliographies in two ways.

1. Inside the main document. thebibliography allows to create citations: \cite{Book}
[citation text] and then refer to them as \ref{Book}. The output will look like [23]
or [KS91]. Note the square brackets here, as opposed to round brackets for equation
references, and no brackets for theorem references. Pandoc converts citations, but does
not allow referencing. We introduce referring tags manually, as described above.

2. From separate reference .bib file. This requires a separate command BibTeX which
is usually built in the TEX interface. However, this does not seem to be compatible
with HTML-MathJax, at least without special packages and the command line.

9



4.10 Accents

LATEX can create accents for names of non-English origin: Poincar\’e for Poincaré, It\^o
for Itô, and others. HTML can do this, see http://sites.psu.edu/symbolcodes/codehtml/.
Pandoc does not convert this. One would need to do this manually in HTML.

5 MathML and Canvas

MathML is a markup language created for browsers to display math content. However,
this is not as simple as transferring the LATEX code to the HTML source. Rather, this is a
completely different markup language, a derivative of Extensible Markup Language (XML).

MathML is used within HTML, and is compatible with (more advanced) CSS. In fact,
MathJax works by converting LATEX formulae to MathML on the go: When we use MathJax,
we implicitly use MathML. This language is screen-readable and tagged in HTML. See
https://www.w3.org/Math/, http://www.csun.edu/ hcmth008/technology.html (Jacek
Polewszak, CSU Northridge), and http://accessibility.psu.edu/math/.

Canvas (the UNR learning management system, also known as WebCampus) uses MathML
in its math mode. In fact, if you create math using ‘Insert Math Equation’ button in Edit
mode, and then switch to HTML editor mode instead of Rich Text mode, you can see
the HTML/MathML script. The ‘Advanced Option’ mode in Canvas coverts LATEX into
MathML. Such script is displayed correctly in browsers (outside Canvas).

However, to the best of our knowledge, this math content is not screen-readable. This
seems strange, because in our tests MathML was correctly read by a screen reader. By
the way, HTML/MathJax script inside ‘HTML mode’ of Canvas does not render properly:
Canvas cuts the preamble which includes MathJax.

WebCampus has MathJax installed in its LATEX, plugin. Thus math typed via this plugin
is readable by the screen reader JAWS (not NVDA) in our tests.

There are command line executions for converting LATEX to MathML. Online converters
can be found on https://www.mathtowebonline.com/ but it failed in our tests. Another
converter LATEXMathML can be installed from http://math.etsu.edu/LaTeXMathML/ (We
did not test this.) We did not find such an option in Pandoc online. Let us also mention the
commercial editor MathType (we have yet to test it).

Unfortunately, MathML is very primitive: It is hard to type even a simple formula. It
requires learning yet another markup language, because it is different from both LATEX and
basic HTML. Thus one should either use MathJax or convert LATEX into MathML using a
converting software (some are mentioned earlier in this section). Also, some users claim that
MathML does not work in Google Chrome without MathJax (although we had a different
experience).

All in all, MathML does not seem to give us any advantage over MathJax, except that
pure MathML is rendered on the screen faster than MathJax.

10



6 Tried & Failed Methods

6.1 LATEX Packages and Their Failures

One can include packages in LATEX by the command \usepackage{[packagename]}. There
exist packages devoted to accessibility. One is accessibility designed by Babett Schaltz
as her Ph.D. thesis. See the links on TEX Stack Exchange:

https://tex.stackexchange.com/questions/261537/

https://tex.stackexchange.com/questions/19279/

https://tex.stackexchange.com/questions/79947/

But in our trials, it does not compile some documents well, and the Ally accessibility
score is sometimes relatively low (70% or even lower, even for LATEX documents with only
simple commands). There are improvements of this package, see the second answer in the
first link above, but they seem hard to use.

Some improvements exist in packages called accessibility-meta and corporate cre-
ated by Andrew Clifton: see the intstructions on the following web pages:

https://github.com/AndyClifton/AccessibleMetaClass

https://github.com/AndyClifton/CorporateLaTeX

But this still does not compile well.

There are other 6 packages on CTAN: https://www.tug.org/twg/accessibility/ and
5 packages on TUG: https://ctan.org/topic/accessible. Among these packages, the
most important seem to be axessibility and accsupp. But they failed our tests.

6.2 Alternative Publishing Systems

As mentioned in Section 1, there exist other publishing systems: X ETEX, X ELATEX, ConTEXt,
and others. Some, see https://tex.stackexchange.com/questions/418954/, are pro-
posed as tools for accessibility. However, in our tests, these have failed to compile or create
accessible PDF documents, as measured by Ally. Also, these systems are not widely known.

7 Summary and Recommendations

We described a way to make LATEX accessible for visually impaired students via conversion
through Pandoc to HTML-MathJax. We discussed in detail that Pandoc does not convert
everything automatically, and we need to do some work manually. This is especially true for
research articles, not so much for lecture notes and assignments. In other words, it is easier
to deal with materials for undergraduate teaching than it is with research papers.

We state the following recommendations for busy faculty who wish to maximize accessi-
bility while minimizing their time commitment. There are five options, listed from most to
least preferable:

1. For your teaching, type math in Web Campus via the LATEX plugin, instead of upload-
ing prepared PDF files.

11



2. Instead of converting previosuly created LATEX content to PDF, convert it to HTML-
MathJax via Pandoc as described above. If it is hard to preserve all automatic num-
bering and references, you are welcome to just skip it. Usually teaching materials do
not have much of such content.

3. Published HTML filed can be added and used as files in Canvas. Students can open
them in a browser and use assistive technologies, such as screen readers, if desired.

4. For publications in Springer, Elsevier, and other publishing houses which have HTML-
MathJax versions of articles on their Web sites together with PDF versions, just refer
the student to them.

5. If nothing else works, talk to students individually and refer them to the Disability
Resource Center (DRC) and Teaching and Learning Technologies (TLT).

Technology in this area is still new and not universally accepted. An initial focus of
scientists and instructors was to create math that will display properly, and now we’re
learning how to make that math read well with assistive technologies to improve the user
experience and to satisfy accessibility compliance guidelines. More cooperation is needed, in
the spirit of respect and mutual trust. Another reason that there is not currently in-depth
accessibility support is because this technology is created mostly free and open source by
professors and graduate students in their spare time. We hope that usage will coalesce around
one best model, which becomes universally accepted. This has indeed happened with other
aspects of mathematical publishing. Further research is needed, because this technology is
still very much emerging.

12


